Skip to main content
Log in

Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and graphene

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We report on a method for electrochemical enantioselective recognition of tryptophan (Trp) enantiomers. It is based on competitive host-guest interaction between a deoxy-(2-aminoethylamino)-β-cyclodextrin (CD) bound to graphene nanosheets and the Cu(II) complexes of the Trp enantiomers via a ligand exchange mechanism. Chiral recognition was investigated via cyclic voltammetry and electrochemical impedance spectroscopy. The results reveal that the CD bound to graphene displays a stronger interaction with the Cu(II) complex of L-Trp than to that of D-Trp. The method was applied to the determination of the ratio of Trp enantiomers in mixtures.

The CD-GNs are dipped in D-Trp or L-Trp solution containing Cu(II), the complexes of metal ion with L-Trp caused more remarkable difference in the [Fe(CN)6]3−/4− than the complexes of metal ion with D-Trp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2

Similar content being viewed by others

References

  1. Cucinotta V, Giuffrida A, Maccarrone G, Messina M, Vecchio G (2006) Ligand exchange capillary electrophoresis by cyclodextrin derivatives, a powerful tool for enantiomeric separations. Electrophoresis 27:1471–1480

    Article  CAS  Google Scholar 

  2. Gopal R, Seo CH, Song PI, Park Y (2013) Effect of repetitive lysine-tryptophan motifs on the bactericidal activity of antimicrobial peptides. Amino Acids 44:645–660

    Article  CAS  Google Scholar 

  3. Liang RP, Liu CM, Meng XY, Wang JW, Qiu JD (2012) A novel open-tubular capillary electrochromatography using beta-cyclodextrin functionalized graphene oxide-magnetic nanocomposites as tunable stationary phase. J Chromatogr A 1266:95–102

    Article  CAS  Google Scholar 

  4. Cubero J, Toribio F, Garrido M, Hernandez MT, Maynar J, Barriga C, Rodriguez AB (2011) Assays of the amino acid tryptophan in cherries by HPLC-fluorescence (vol 3, pg 36, 2010). Food Anal Methods 4:626

    Article  Google Scholar 

  5. Iizuka H, Ishii K, Hirasa Y, Kubo K, Fukushima T (2011) Fluorescence determination of D- and L-tryptophan concentrations in rat plasma following administration of tryptophan enantiomers using HPLC with pre-column derivatization. J Chromatogr B Anal Technol Biomed Life Sci 879:3208–3213

    Article  CAS  Google Scholar 

  6. Zhen QN, Xu BA, Ma L, Tian G, Tang XF, Ding M (2011) Simultaneous determination of tryptophan, kynurenine and 5-hydroxytryptamine by HPLC: application in uremic patients undergoing hemodialysis. Clin Biochem 44:226–230

    Article  CAS  Google Scholar 

  7. Cucinotta V, Contino A, Giuffrida A, Maccarrone G, Messina M (2010) Application of charged single isomer derivatives of cyclodextrins in capillary electrophoresis for chiral analysis. J Chromatogr A 1217:953–967

    Article  CAS  Google Scholar 

  8. Juvancz Z, Kendrovics RB, Ivanyi R, Szente L (2008) The role of cyclodextrins in chiral capillary electrophoresis. Electrophoresis 29:1701–1712

    Article  CAS  Google Scholar 

  9. Guo Y, Chen Y, Zhao Q, Shuang S, Dong C (2011) Electrochemical sensor for ultrasensitive determination of doxorubicin and methotrexate based on cyclodextrin-graphene hybrid nanosheets. Electroanalysis 23:2400–2407

    Article  CAS  Google Scholar 

  10. Qi L, Yang G (2009) Enantioseparation of dansyl amino acids by ligand-exchange capillary electrophoresis with zinc(II)-L-phenylalaninamide complex. J Sep Sci 32:3209–3214

    Article  CAS  Google Scholar 

  11. Kodama S, Taga A, Yamamoto A, Ito Y, Honda Y, Suzuki K, Yamashita T, Kemmei T, Aizawa S (2010) Enantioseparation of DL-isocitric acid by a chiral ligand exchange CE with Ni(II)-D-quinic acid system. Electrophoresis 31:3586–3591

    Article  CAS  Google Scholar 

  12. Segui-Lines G, Gavina JM, D’Amaral JC, Britz-McKibbin P (2007) High-throughput screening of holoprotein conformational stability by dynamic ligand exchange-affinity capillary electrophoresis. Analyst 132:741–744

    Article  CAS  Google Scholar 

  13. Tong S, Guan YX, Yan J, Zheng B, Zhao L (2011) Enantiomeric separation of (R, S)-naproxen by recycling high speed counter-current chromatography with hydroxypropyl-beta-cyclodextrin as chiral selector. J Chromatogr A 1218:5434–5440

    Article  CAS  Google Scholar 

  14. Chen Z, Uchiyama K, Hobo T (2004) Chiral resolution of dansyl amino acids by ligand exchange-capillary electrophoresis using Cu(II)-l-prolinamides as chiral selector. Anal Chim Acta 523:1–7

    Article  CAS  Google Scholar 

  15. Ward TJ, Ward KD (2012) Chiral separations: a review of current topics and trends. Anal Chem 84:626–635

    Article  CAS  Google Scholar 

  16. Liu P, Sun X, He W, Jiang R, Wang P, Zhao Y, Zhang S (2009) Enantioselective separation of chiral vicinal diols in capillary electrophoresis using a mono-6(A)-aminoethylamino-beta-cyclodextrin as a chiral selector. J Sep Sci 32:125–134

    Article  CAS  Google Scholar 

  17. Fu YZ, Wang LL, Chen Q, Zhou J (2011) Enantioselective recognition of chiral mandelic acid in the presence of Zn(II) ions by L-cysteine-modified electrode. Sensors Actuators B Chem 155:140–144

    Article  CAS  Google Scholar 

  18. Zhu X, Jiao Q, Zhang C, Zuo X, Xiao X, Liang Y, Nan J (2013) Amperometric nonenzymatic determination of glucose based on a glassy carbon electrode modified with nickel(II) oxides and graphene. Microchim Acta 180:477–483

    Article  CAS  Google Scholar 

  19. Zhou N, Chen H, Li J, Chen L (2013) Highly sensitive and selective voltammetric detection of mercury(II) using an ITO electrode modified with 5-methyl-2-thiouracil, graphene oxide and gold nanoparticles. Microchim Acta 180:493–499

    Article  CAS  Google Scholar 

  20. Zhao F, Wang F, Zhao W, Zhou J, Liu Y, Zou L, Ye B (2011) Voltammetric sensor for caffeine based on a glassy carbon electrode modified with Nafion and graphene oxide. Microchim Acta 174:383–390

    Article  CAS  Google Scholar 

  21. Ma X, Liu Z, Qiu C, Chen T, Ma H (2013) Simultaneous determination of hydroquinone and catechol based on glassy carbon electrode modified with gold-graphene nanocomposite. Microchim Acta 180:461–468

    Article  CAS  Google Scholar 

  22. Li J, Kuang D, Feng Y, Zhang F, Xu Z, Liu M, Wang D (2013) Electrochemical tyrosine sensor based on a glassy carbon electrode modified with a nanohybrid made from graphene oxide and multiwalled carbon nanotubes. Microchim Acta 180:49–58

    Article  CAS  Google Scholar 

  23. Gong H, Sun M, Fan R, Qian L (2013) One-step preparation of a composite consisting of graphene oxide, Prussian blue and chitosan for electrochemical sensing of hydrogen peroxide. Microchim Acta 180:295–301

    Article  CAS  Google Scholar 

  24. Xia Y, Gao P, Bo Y, Wang W, Huang S (2012) Immunoassay for SKOV-3 human ovarian carcinoma cells using a graphene oxide-modified electrode. Microchim Acta 179:201–207

    Article  CAS  Google Scholar 

  25. Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1–19

    Article  CAS  Google Scholar 

  26. Wang Y, Han Q, Zhang Q, Huang Y, Guo L, Fu Y (2012) Enantioselective recognition of penicillamine enantiomers on bovine serum albumin-modified glassy carbon electrode. J Solid State Electrochem 17:627–633

    Article  CAS  Google Scholar 

  27. Chen Q, Zhou J, Han Q, Wang Y, Fu Y (2012) A new chiral electrochemical sensor for the enantioselective recognition of penicillamine enantiomers. J Solid State Electrochem 16:2481–2485

    Article  CAS  Google Scholar 

  28. Edwards RS, Coleman KS (2013) Graphene synthesis: relationship to applications. Nanoscale 5:38–51

    Article  CAS  Google Scholar 

  29. Cheng C, Li D (2013) Solvated graphenes: an emerging class of functional soft materials. Adv Mater 25:13–30

    Article  CAS  Google Scholar 

  30. Zhang S, Zhu L, Song H, Chen X, Wu B, Zhou J, Wang F (2012) How graphene is exfoliated from graphitic materials: synergistic effect of oxidation and intercalation processes in open, semi-closed, and closed carbon systems. J Mater Chem 22:22150

    Article  CAS  Google Scholar 

  31. Kitagawa F, Otsuka K (2011) Recent progress in capillary electrophoretic analysis of amino acid enantiomers. J Chromatogr B Anal Technol Biomed Life Sci 879:3078–3095

    Article  CAS  Google Scholar 

  32. Rizkov D, Mizrahi S, Cohen S, Lev O (2010) beta-Amino alcohol selectors for enantioselective separation of amino acids by ligand-exchange capillary zone electrophoresis in a low molecular weight organogel. Electrophoresis 31:3921–3927

    Article  CAS  Google Scholar 

  33. Qi L, Han Y, Zuo M, Chen Y (2007) Chiral CE of aromatic amino acids by ligand-exchange with zinc(II)-L-lysine complex. Electrophoresis 28:2629–2634

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21175047, 21147003) and the Scientific Research Foundation of Graduate School of South China Normal University (2012kyjj217).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanlian Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feng, W., Liu, C., Lu, S. et al. Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and graphene. Microchim Acta 181, 501–509 (2014). https://doi.org/10.1007/s00604-014-1174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-014-1174-0

Keywords

Navigation