Skip to main content
Log in

Nonenzymatic sensor for hydrogen peroxide based on the electrodeposition of silver nanoparticles on poly(ionic liquid)-stabilized graphene sheets

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

We have developed a nonenzymatic sensor for hydrogen peroxide (HP) that is based on a new kind of nanocomposite consisting of silver nanoparticles (AgNPs) electrodeposited on a basic film of a poly(ionic liquid) containing graphene. The nanocomposite was characterized by scanning electron microscopy, energy dispersive X-ray studies, cyclic voltammetry, and chronoamperometry. The AgNPs on the basic composite film provide the electrode with enhanced sensitivity in that the signal obtained for HP is 10-fold improved in the best case. The sensor exhibits good linear response in the 0.1 μM to 2.2 mM HP concentration range, and the detection limit is 0.05 μM (at S/N = 3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Estevez L, Kelarakis A, Gong Q, Da’as EH, Giannelis EP (2011) Multifunctional graphene/platinum/nafion hybrids via ice templating. J Am Chem Soc 133:6122

    Article  CAS  Google Scholar 

  2. Li SJ, Deng DH, Shi Q, Liu SR (2012) Electrochemical synthesis of a graphene sheet and gold nanoparticle-based nanocomposite, and its application to amperometric sensing of dopamine. Microchim Acta 177:325

    Article  CAS  Google Scholar 

  3. Luo J, Zhang H, Jiang S, Jiang J, Liu X (2012) Facile one-step electrochemical fabrication of a non-enzymatic glucose-selective glassy carbon electrode modified with copper nanoparticles and graphene. Microchim Acta 177:485

    Article  CAS  Google Scholar 

  4. Pérez-López B, Merkoçi A (2012) Carbon nanotubes and graphene in analytical sciences. Microchim Acta 179:1

    Article  Google Scholar 

  5. Gan T, Hu S (2011) Electrochemical sensors based on graphene materials. Microchim Acta 175:1

    Article  CAS  Google Scholar 

  6. Amajjahe S, Ritter H (2009) Microwave-sensitive foamable poly (ionic liquids) bearing tert-butyl ester groups: influence of counterions on the ester pyrolysis. Macromol Rapid Commun 30:94

    Article  CAS  Google Scholar 

  7. Wu BH, Hu D, Kuang YJ, Liu B, Zhang XH, Chen JH (2009) Functionalization of carbon nanotubes by anionic-liquid polymer: dispersion of Pt and PtRu nanoparticles on carbon nanotubes and their electrocatalytic oxidation of methanol. Angew Chem Int Ed 48:4751

    Article  CAS  Google Scholar 

  8. Tollan CM, Marcilla R, Pomposo JA, Rodriguez J, Aizpurua J, Molina J, Mecerreyes D (2009) Irreversible thermochromic behavior in gold and silver nanorod/polymeric ionic liquid nanocomposite films. ACS Appl Mater Interfaces 1:348

    Article  CAS  Google Scholar 

  9. Zhang Q, Wu S, Zhang L, Lu J, Verproot F, Liu Y, Xing Z, Li J, Song X (2011) Fabrication of polymeric ionic liquid/graphene nanocomposite for glucose oxidase immobilization and direct electrochemistry. Biosens Bioelectron 26:2632

    Article  CAS  Google Scholar 

  10. Tung TT, Kim TY, Shim JP, Yang WS, Kim H, Suh KS (2011) Poly (ionic liquid)-stabilized graphene sheets and their hybrid with poly (3,4-ethylenedioxythiophene). Org Electron 12:2215

    Article  CAS  Google Scholar 

  11. Kim TY, Lee HW, Kim JE, Suh KS (2010) Synthesis of phase transferable graphene sheets using ionic liquid polymers. ACS Nano 4:1612

    Article  CAS  Google Scholar 

  12. Bo X, Bai J, Qi B, Guo L (2011) Ultra-fine Pt nanoparticles supported on ionic liquid polymer-functionalized ordered mesoporous carbons for nonenzymatic hydrogen peroxide detection. Biosens Bioelectron 28:77

    Article  CAS  Google Scholar 

  13. Luo Z, Chen K, Lu D, Han H, Zou M (2011) Synthesis of p-aminothiophenol-embedded gold/silver core-shell nanostructures as novel SERS tags for biosensing applications. Microchim Acta 173:149

    Article  CAS  Google Scholar 

  14. Habibi B, Jahanbakhshi M, Pournaghi-Azar MH (2012) Voltammetric and amperometric determination of hydrogen peroxide using a carbon-ceramic electrode modified with a nanohybrid composite made from single-walled carbon nanotubes and silver nanoparticles. Microchim Acta 177:185

    Article  CAS  Google Scholar 

  15. Takai A, Kamat PV (2011) Capture, store, and discharge. Shuttling photogenerated electrons across TiO2-silver interface. ACS Nano 5:7369

    Article  CAS  Google Scholar 

  16. Choi JW, McDonough J, Jeong S, Yoo JS, Chan CK, Cui Y (2010) Stepwise nanopore evolution in one-dimensional nanostructures. Nano Lett 10:1409

    Article  CAS  Google Scholar 

  17. Tian L, Feng Y, Qi Y, Wang B, Chen Y (2012) Non-enzymatic amperometric sensor for hydrogen peroxide based on a biocomposite made from chitosan, hemoglobin, and silver nanoparticles. Microchim Acta 177:39

    Article  CAS  Google Scholar 

  18. Choi I, Song HD, Lee S, Yang YI, Kang T, Yi J (2012) Core-satellites assembly of silver nanoparticles on a single gold nanoparticle via metal ion-mediated complex. J Am Chem Soc 134:12083

    Article  CAS  Google Scholar 

  19. Wang Y, Tang M, Li X, Gao F, Li M (2012) Sensor for hydrogen peroxide using a hemoglobin-modified glassy carbon electrode prepared by enhanced loading of silver nanoparticles onto carbon nanospheres via spontaneous polymerization of dopamine. Microchim Acta 176:405

    Article  CAS  Google Scholar 

  20. Chen Y, Wu L, Chen Y, Bi N, Zheng X (2012) Determination of mercury(II) by surface-enhanced Raman scattering spectroscopy based on thiol-functionalized silver nanoparticles. Microchim Acta 177:341

    Article  CAS  Google Scholar 

  21. Hummers WS, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  CAS  Google Scholar 

  22. Marcilla R, Blazquez JA, Rodriguez J, Pomposo JA, Mecerreyes D (2004) Tuning the solubility of polymerized ionic liquids by simple anion exchange reactions. J Polym Sci A Polym Chem 42:208

    Article  CAS  Google Scholar 

  23. Kim TY, Lee TH, Kim JE, Kasi RM, Sung CSP, Suh KS (2008) Organic solvent dispersion of poly (3, 4-ethylenedioxythiophene) with the use of polymeric ionic liquid. J Polym Sci A Polym Chem 46:6872

    Article  CAS  Google Scholar 

  24. Zhu Y, Stoller MD, Cai W, Velamakanni A, Piner RD, Chen D (2010) Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4:1227

    Article  CAS  Google Scholar 

  25. Safavi A, Maleki N, Farjamia E (2009) Electrodeposited silver nanoparticles on carbon ionic liquid electrode for electrocatalytic sensing of hydrogen peroxide. Electroanalysis 21:1533

    Article  CAS  Google Scholar 

  26. Xiao F, Zhao F, Zhang Y, Guo G, Zeng B (2009) Ultrasonic electrodeposition of gold–platinum alloy nanoparticles on ionic liquid–chitosan composite film and their application in fabricating nonenzyme hydrogen peroxide sensors. J Phys Chem C 113:849

    Article  CAS  Google Scholar 

  27. Ferrari AC (2007) Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun 143:47

    Article  CAS  Google Scholar 

  28. Liu Y, Huang Y, Xie Y, Yang Z, Huang H, Zhou Q (2012) Preparation of highly dispersed CuPt nanoparticles on ionic-liquid-assisted graphene sheets for direct methanol fuel cell. Chem Eng J 197:80

    Article  CAS  Google Scholar 

  29. Ping J, Wang Y, Fan K, Wu J, Ying Y (2011) Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application. Biosens Bioelectron 28:204

    Article  CAS  Google Scholar 

  30. Xu F, Sun Y, Zhang Y, Shi Y, Wen Z, Li Z (2011) Graphene-Pt nanocomposite for nonenzymatic detection of hydrogen peroxide with enhanced sensitivity. Electrochem Commun 13:1131

    Article  CAS  Google Scholar 

  31. Wang AJ, Zhang PP, Li YF, Feng JJ, Dong WJ, Liu XY (2011) Hydrogen peroxide sensor based on glassy carbon electrode modified with β-manganese dioxide nanorods. Microchim Acta 175:31

    Article  CAS  Google Scholar 

  32. Li Y, Zhang JJ, Xuan J, Jiang LP, Zhu JJ (2010) Fabrication of a novel nonenzymatic hydrogen peroxide sensor based on Se/Pt nanocomposites. Electrochem Commun 12:777

    Article  CAS  Google Scholar 

  33. Lin KC, Tsai TH, Chen SM (2010) Performing enzyme-free H2O2 biosensor and simultaneous determination for AA, DA, and UA by MWCNT-PEDOT film. Biosens Bioelectron 26:608

    Article  CAS  Google Scholar 

  34. Razmi H, Mohammad-Rezaei R (2010) Non-enzymatic hydrogen peroxide sensor using an electrode modified with iron pentacyanonitrosylferrate nanoparticles. Microchim Acta 171:257

    Article  CAS  Google Scholar 

  35. Zhang K, Zhang N, Cai H, Cong W (2012) A novel non-enzyme hydrogen peroxide sensor based on an electrode modified with carbon nanotube-wired CuO nanoflowers. Microchim Acta 176:137

    Article  CAS  Google Scholar 

  36. Zhong H, Yuan R, Chai Y, Zhang Y, Wang C, Jia F (2012) Non-enzymatic hydrogen peroxide amperometric sensor based on a glassy carbon electrode modified with an MWCNT/polyaniline composite film and platinum nanoparticles. Microchim Acta 176:389

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by “China State Forestry Bureau 948 Project (2009-4-62)” and “the Fundamental Research Funds for the Central Universities”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 152 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Q., Yun, Y. Nonenzymatic sensor for hydrogen peroxide based on the electrodeposition of silver nanoparticles on poly(ionic liquid)-stabilized graphene sheets. Microchim Acta 180, 261–268 (2013). https://doi.org/10.1007/s00604-012-0921-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-012-0921-3

Keywords

Navigation