Skip to main content
Log in

Electrocatalytic oxidation of hydrazine at a glassy carbon electrode modified with nickel ferrite and multi-walled carbon nanotubes

  • Original Paper
  • Published:
Microchimica Acta Aims and scope Submit manuscript

Abstract

A hydrothermal technique was used to synthesize nickel ferrite nanoparticles (NF-NPs) deposited on multi-walled carbon nanotubes (MWCNTs). The material was characterized by scanning electron microscopy, energy dispersive spectrometry, and X-ray powder diffraction which showed that the NF-NPs are located on the surface of the carboxylated MWCNTs. The material was used to modify a glassy carbon electrode which then was characterized via cyclic voltammetry, electrochemical impedance spectroscopy, and amperometry. The electrode displays strong electrochemical response to hydrazine. A potential hydrazine sensing scheme is suggested.

A fast and sensitive hydrazine electrochemical sensor has been fabricated by dipping nickel ferrite/multi-walled carbon nanotubes onto the pretreated glassy carbon electrode. The sensor had excellent stability, rapid response, ease of construction and utilization for hydrazine determination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. De Witt BJ, Patent US, Patent No. 2,787,525, Patented Apr. 2, 1957, 1

  2. Gilbert R, Rioux R (1984) Ion chromatographic determination of morpholine and cyclohexylamine in aqueous solutions containing ammonia and hydrazine. Anal Chem 56:106

    Article  CAS  Google Scholar 

  3. Safavi A, Ensafi AA (1995) Kinetic spectrophotometric determination of hydrazine. Anal Chim Acta 300:307

    Article  CAS  Google Scholar 

  4. Brown AB, Gibson TL, Baum JC, Ren T, Smith TM (2005) Fluorescence-enhancement sensing of ammonia and hydrazines via disruption of the internal hydrogen bond in a carbazolopyrinophane. Sens Actuators B 110:8

    Article  Google Scholar 

  5. Safavi A, Karimi MA (2002) Flow injection chemiluminescence determination of hydrazine by oxidation with chlorinated isocyanurates. Talanta 58:785

    Article  CAS  Google Scholar 

  6. Ebadi M (2003) Electrocatalytic oxidation and flow amperometric detection of hydrazine on dinuclear ruthenium phthalocyanine modified elctrode. Can J Chem 81:161

    Article  CAS  Google Scholar 

  7. Ensafi AA, Rezaei B (1998) Flow injection determination of hydrazine with fluorimetric detection. Talanta 47:645

    Article  CAS  Google Scholar 

  8. Nassef HM, Radi AE, O’Sullivan CK (2006) Electrocatalytic oxidation of hydrazine at o-aminophenol grafted modified glassy carbon electrode: Reusable hydrazine amperometric sensor. J Electroanal Chem 592:139

    Article  CAS  Google Scholar 

  9. Bo XJ, Bai J, Ju J, Guo LP (2010) A sensitive amperometric sensor for hydrazine and hydrogen peroxide based on palladium nanoparticles/onion-like mesoporous carbon vesicle. Anal Chim Acta 675:29

    Article  CAS  Google Scholar 

  10. Hu GZ, Zhou ZP, Guo Y, Hou HQ, Shao SJ (2010) Electrospun rhodium nanoparticle-loaded carbon nanofibers for highly selective amperometric sensing of hydrazine. Electrochem Comm 12:422

    Article  CAS  Google Scholar 

  11. Zare HR, Shishehbore MR, Nematollahi D, Tehrani MS (2010) Electrochemical behavior of nano-composite containing 4-hydroxy-2-(triphenylphosphonio)phenolate and multi-wall carbon nanotubes spiked in carbon paste and its application for electrocatalytic oxidation of hydrazine. Sens Actuators B 151:153

    Article  Google Scholar 

  12. Morais A, Pissetti FL, Lucho AMS, Gushikem Y (2010) Influence of copper hexacyanoferrate film thickness on the elctrochemical properites of self-assembled 3-mercaptopropyl gold electrode and application as a hydrazine sensor. J Solid State Electrochem 14:1383

    Article  Google Scholar 

  13. Wang Y, Wan Y, Zhang D (2010) Reduced graphene sheets modified glassy carbon electrode for electrocatalytic oxidation of hydrazine in alkaline media. Electrochim Commun 12:187

    Article  CAS  Google Scholar 

  14. Majidi MR, Jouyban A, Zeynali KA (2007) Electrocatalytic oxidation of hydrazine at overoxidized polypyrrole film modified glassy carbon electrode. Electrochim Acta 52:6248

    Article  CAS  Google Scholar 

  15. Liu J, Zhou WH, You TY, Li FL, Wang EK, Dong SJ (1996) Detection of hydrazine, methylhydrazine, and isoniazid by capillary electrophoresis with a Palladium-modified microdisk array electrode. Anal Chem 68:3350

    Article  CAS  Google Scholar 

  16. Wang GW, Gao GY, Wang C, Xu CL, Li HL (2008) Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon 46:747

    Article  Google Scholar 

  17. Fang B, Zhang CH, Zhang W, Wang GF (2009) A novel hydrazine electrochemical sensor based on a carbon nanotube-wired ZnO nanoflower-modified electrode. Electrochim Acta 55:178

    Article  CAS  Google Scholar 

  18. Zheng L, Song JF (2009) Ni(II) baicalein complex modified multi-wall carbon nanotube paste electrode toward electrocatalytic oxidation of hydrazine. Talanta 79:319

    Article  CAS  Google Scholar 

  19. Li F, Liu JJ, Evans DG, Duan X (2004) Stoichiometric synthesis of pure MFe2O4 (M=Mg, Co, and Ni) spinel ferrites from tailored layered double hydroxide (hydrotalcite-like) precursors. Chem Mater 16:1597

    Article  CAS  Google Scholar 

  20. Bao NZ, Shen LM, Wang Y, Padhan P, Gupta A (2007) A facile theromolysis route to monodisperse ferrite nanocrystals. J Am Chem Soc 129:12374

    Article  CAS  Google Scholar 

  21. Gunjakar JL, More AM, Shinde VR, Lokhande CD (2008) Synthesis of nanocrystalline nickel ferrite (NiFe2O4) thin films using low temperature modified chemical method. J Alloy Compd 465:468

    Article  CAS  Google Scholar 

  22. Reddy CVG, Manorama SV, Rao VJ (1999) Semiconducting gas sensor for chlorine based on inverse spinel nickel ferrite. Sens Actuators B 55:90

    Article  Google Scholar 

  23. Rezlescu N, Iftimie N, Rezlescu E, Doroftei C, Popa PD (2006) Semiconducting gas sensor for acetone based on the fine grained nickel ferrite. Sens Actuators B 114:427

    Article  Google Scholar 

  24. Luo LQ, Li QX, Xu YH, Ding YP, Wang X, Deng DM, Xu YJ (2010) Amperometric glucose biosensor based on NiFe2O4 nanoparticles and chitosan. Sens Actuators B 145:293

    Article  Google Scholar 

  25. Shaidarova LG, Budnikov GK (2008) Chemically modification electrodes based on noble metals, polymer films, or their composites in organic voltammetry. J Anal Chem 63:922

    Article  CAS  Google Scholar 

  26. Guldi DM, Rahman GMA, Zerbetto F, Prato M (2005) Carbon nanotubes in electron donor-acceptor nanocomposites. Acc Chem Res 38:871

    Article  CAS  Google Scholar 

  27. Zhang XJ, Wang GF, Zhang W, Wei Y, Fang B (2009) Fixture-reduce method for the synthesis of Cu2O/MWCNTs nanocomposites and its application as enzyme-free glucose sensor. Biosens Bioelectron 24:3395

    Article  CAS  Google Scholar 

  28. Liu B, Lee JY (2005) Ordered alignment of CdS nanocrystals on MWCNTs without surface modification. J Phys Chem B 109:23783

    Article  CAS  Google Scholar 

  29. Gundiah G, Govindaraj A, Rajalakshmi N, Dhathathreyan KS, Rao CNR (2003) Hydrogen storage in carbon nanotubes and related materials. J Mater Chem 13:209

    Article  CAS  Google Scholar 

  30. Zhang YL, Zhu MF, Zhang QH, Yu H, Li YG, Wang HZ (2010) Solvothermal one-step synthesis of MWCNTs/Ni0.5Zn0.5Fe2O4 magnetic composites. J Magn Magn Mater 322:2006

    Article  CAS  Google Scholar 

  31. Salimi A, Abdi K (2004) Enhancement of the analytical properties and catalytic activity of a nickel hexacyanoferrate modified carbon ceramic electrode amine. Talanta 63:475

    Article  CAS  Google Scholar 

  32. Shen Y, Xu Q, Gao H, Zhu NN (2009) Dendrimer-encapsulated Pd nanoparticles anchored on carbon nanotubes for electro-catalytic hydrazine oxidation. Electrochem Commun 11:1329

    Article  CAS  Google Scholar 

  33. Chen L, Hu GZ, Zou GJ, Shao SJ, Wang XL (2009) Efficient anchorage of Pd nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Electrochem Commun 11:504

    Article  CAS  Google Scholar 

  34. Zheng JB, Sheng QL, Li L, Shen Y (2007) Bismuth hexacyanoferrate-modified carbon ceramic electrodes prepared by electrochemical deposition and its electrocatalytic activity towards oxidation of hydrazine. J Electroanal Chem 611:155

    Article  CAS  Google Scholar 

  35. Pinter JS, Brown KL, DeYoung PA, Peaslee GF (2007) Amperometric detection of hydrazine by cyclic voltammetry and flow injection analysis using ruthenium modified glassy carbon electrodes. Talanta 71:1219

    Article  CAS  Google Scholar 

  36. Abbaspour A, Khajehzadeh A, Ghaffarinejad A (2009) Electrocatalytic oxidation and determination of hydrazine on nickel hexacyanoferrate nanoparticles-modified carbon ceramic electrode. J Electroanal Chem 631:52

    Article  CAS  Google Scholar 

  37. Auley CB, Banks CE, Simm AO, Jones TGJ, Compton RG (2006) The electroanalytical detection of hydrazine: a comparison of the use of palladium nanoparticles supported on boron-doped diamond and palladium palted BDD microdisc array. Analyst 131:106

    Article  Google Scholar 

  38. Ozoemena KI, Nyokong T (2005) Electrocatalytic oxidation and detection of hydrazine at gold electrode modified with iron phthalocyanine complex linked to mercaptopyridine self-assembled monolayer. Talanta 67:162

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the projects (20675001, 20901003, 21073001 and 21005001) from National Natural Science Foundation of China, Natural Science Foundation of Anhui (KJ2009B013Z), the project of Anhui Key Laboratory of Controllable Chemistry Reaction & Material Chemical Engineering (OFCC0905), the Young Teacher Program of Anhui Normal University (2009xqnzc19), the Higher Education Excellent Youth Talents Foundation of Anhui Province (2011SQRL103), and the Higher Education Natural Science Foundation of Anhui Province (KJ2011Z389).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Fang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 314 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fang, B., Feng, Y., Liu, M. et al. Electrocatalytic oxidation of hydrazine at a glassy carbon electrode modified with nickel ferrite and multi-walled carbon nanotubes. Microchim Acta 175, 145–150 (2011). https://doi.org/10.1007/s00604-011-0662-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00604-011-0662-8

Keywords

Navigation