Effect of Joint Orientation on the Breakage Behavior of Jointed Rock Mass Loaded by Disc Cutters

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19


B :

Thickness of rock specimens

E :

Young’s modulus of the granite

E c :

Crack propagation energy

E I :

Energy consumed by mode I cracks

E I I :

Energy consumed by mode II cracks

E I–I I :

Energy consumed by mixed mode I–II cracks

F n :

Normal force acting on the joint plane

F s :

Frictional force along the joint plane

G :

Shear modulus of the granite

G I :

Mode I strain energy release rate

G I I :

Mode II strain energy release rate

G I –II :

Mixed mode I/II strain energy release rate

k I :

Mode I stress intensity factor

k I I :

Mode II stress intensity factor

k I C :

Mode I fracture toughness

k I IC :

Mode II fracture toughness

p :

Penetration depth


Specific energy

SEc :

Crack propagation-specific energy

V :

Volume of rock chips

\({\upvarepsilon }_{1}\) :

The maximum principal strain

\({\upvarepsilon }_{3}\) :

The minimum principal strain

\({\uptau }_{xy}\) :

Shear stress

\({\upgamma }_{xy}\) :

Shear strain

\({\upsigma }_{1}\) :

The maximum principal stress

\({\upupsilon }\) :

Poisson’s ratio of the granite

Δa :

Length incensement of cracks


  1. Adoko AC, Gokceoglu C, Yagiz S (2017) Bayesian prediction of TBM penetration rate in rock mass. Eng Geol 226:245–256

    Article  Google Scholar 

  2. Alehoseein H, Detournay E, Huang H (2000) An analytical model for the indentation of rocks by blunt tools. Rock Mech Rock Eng 33(4):267–284

    Article  Google Scholar 

  3. Armetti G, Migliazza MR, Ferrari F, Berti A, Padovese P (2018) Geological and mechanical rock mass conditions for TBM performance prediction. The case of “La Maddalena” exploratory tunnel, Chiomonte (Italy). Tunn Undergr Sp Tech 77:115–126

    Article  Google Scholar 

  4. Barton N (2000) TBM tunnelling in jointed and faulted rock. CRC Press, Netherland

    Google Scholar 

  5. Barton N, Lien R, Lunde J (1974) Engineering classification of rock masses for the design of tunnel support. Rock Mech 6(4):189–236

    Article  Google Scholar 

  6. Bejari H, Khademi Hamidi J (2013) Simultaneous effects of joint spacing and orientation on TBM cutting efficiency in jointed rock masses. Rock Mech Rock Eng 46:897–907

    Article  Google Scholar 

  7. Bhavikatti S, Bhat MR, Murthy CRL (2011) Fatigue crack growth monitoring in Ti-6Al-4V alloy using acoustic emission technique and digital image correlation. J Nondestruct Eval 9(4):1–7

    Google Scholar 

  8. Brino G, Peila D, Steidl A, Fasching F (2015) Prediction of performance and cutter wear in rock TBM: Application to Koralm tunnel project. In: Geoingegneria Ambientale e Mineraria. Turin, Italy, pp 37–58

  9. Bruland A (1998) Hard rock tunnel boring. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway

  10. Choupani N (2008) Experimental and numerical investigation of the mixed-mode delamination in Arcan laminated specimens. Mater Sci Eng A 478(1–2):229–242

    Article  Google Scholar 

  11. Farmer IW, Glossop NH (1980) Mechanics of disc cutter penetration. Tunnels Tunn 12(6):22–25

    Google Scholar 

  12. Gong QM, Zhao J (2009) Development of a rock mass characteristics model for TBM penetration rate prediction. Int J Rock Mech Min Sci 46:8–18

    Article  Google Scholar 

  13. Gong QM, Zhao J, Jiao YY (2005) Numerical modeling of the effects of joint orientation on rock fragmentation by TBM cutters. Tunn Undergr Sp Tech 20(2):183–191

    Article  Google Scholar 

  14. Gong QM, Jiao YY, Zhao J (2006) Numerical modelling of the effects of joint spacing on rock fragmentation by TBM cutters. Tunn Undergr Sp Tech 21(1):46–55

    Article  Google Scholar 

  15. Hamidi JK, Shahriar K, Rezai B, Rostami J (2010) Performance prediction of hard rock TBM using rock mass rating (RMR) system. Tunn Undergr Sp Tech 25(4):333–345

    Article  Google Scholar 

  16. Hassanpour J, Rostami J, Khamehchiyan M, Bruland A, Tavakoli HR (2010) TBM performance analysis in pyroclastic rocks: a case history of Karaj water conveyance tunnel. Rock Mech Rock Eng 43:427–445

    Article  Google Scholar 

  17. Hassanpour J, Rostami J, Zhao J (2011) A new hard rock TBM performance prediction model for project planning. Tunn Undergr Sp Tech 26(5):595–603

    Article  Google Scholar 

  18. Hassanpour J, Rostami J, Tarigh Azali J, Zhao J (2014) Introduction of an empirical TBM cutter wear prediction model for pyroclastic and mafic igneous rocks; a case history of Karaj water conveyance tunnel. Iran Tunn Undergr Sp Tech 43:222–231

    Article  Google Scholar 

  19. Hughes HM (1986) The relative cuttability of coal-measures stone. Int J Rock Mech Min Sci Geomech Abstr 3(2):95–109

    Google Scholar 

  20. Jiang MJ, Liao YB, Wang HN, Sun Y (2018) Distinct element method analysis of jointed rock fragmentation induced by TBM cutting. Eur J Environ Civ Eng 22(S1):79–98

    Article  Google Scholar 

  21. Johnson KL (1985) Contact mechanics. Cambridge University Press, Cambridge

    Google Scholar 

  22. Khademi Hamidi J, Shahriar K, Rezai B, Rostami J (2010) Performance prediction of hard rock TBM using rock mass rating (RMR) system. Tunn Undergr Sp Tech 25:333–345

    Article  Google Scholar 

  23. Lin Q, Yuan H, Biolzi L, Labuz JF (2014) Opening and mixed mode fracture processes in a quasi-brittle material via digital imaging. Eng Fract Mech 131:176–193

    Article  Google Scholar 

  24. Lin QB, Cao P, Li KH, Cao RH, Zhou KP, Deng HW (2018) Experimental study on acoustic emission characteristics of jointed rock mass by double disc cutter. J Cent South Univ 25:357–367

    Article  Google Scholar 

  25. Liu C, Xu Q, Shi B, Deng S, Zhu HH (2017) Mechanical properties and energy conversion of 3D close-packed lattice model for brittle rocks. Comput Geosci UK 103:12–20

    Article  Google Scholar 

  26. Liu BL, Yang HQ, Karekal S (2020) Effect of water content on argillization of mudstone during the tunnelling process. Rock Mech Rock Eng 53(2):799–813

    Article  Google Scholar 

  27. Macias FJ, Jakobsen PD, Seo Y, Bruland A (2014) Influence of rock mass fracturing on the net penetration rates of hard rock TBMs. Tunn Undergr Sp Tech 44:108–120

    Article  Google Scholar 

  28. Moradi E, Zeinedini A (2020) On the mixed mode I/II/III inter-laminar fracture toughness of cotton/epoxy laminated composites. Theor Appl Fract Mech 105:102400

    Article  Google Scholar 

  29. Peng Y, Liu HL, Li C, Ding XM, Deng X, Wang CY (2021) The detailed particle breakage around the pile in coral sand. Acta Geotech. https://doi.org/10.1007/s11440-020-01089-2

  30. Rostami J (1997) Development of a force estimation model for rock fragmentation with disc cutters through theoretical modeling and physical measurement of crushed zone pressure. Ph.D. Thesis, Colorado School of Mines, Golden, Colorado, USA

  31. Rostami J (2016) Performance prediction of hard rock tunnel boring machines (TBMs) in difficult ground. Tunn Undergr Sp Tech 57:173–182

    Article  Google Scholar 

  32. Roxborough FF, Phillips HR (1975) Rock excavation by disc cutter. Int J Rock Mech Min Sci Geomech Abstr 12(12):361–366

    Article  Google Scholar 

  33. Sanio HP (1985) Prediction of the performance of disc cutters in anisotropic rock. Int J Rock Mech Min Sci Geomech Abstr 22(3):153–161

    Article  Google Scholar 

  34. Sato K, Gong F, Itakura K (1991) Prediction of disc cutter performance using a circular rock cutting ring. In: Proceedings 1st international mine mechanization and automation symposium

  35. Sharafisafa M, Shen LM, Xu QF (2018) Characterisation of mechanical behaviour of 3D printed rock-like material with digital image correlation. Int J Rock Mech Min Sci 112:122–138

    Article  Google Scholar 

  36. Snowdon RA, Ryley MD, Temporal J (1982) A study of disc cutting in selected British rocks. Int J Rock Mech Min Sci Geomech Abstr 19(3):107–121

    Article  Google Scholar 

  37. Teale R (1965) The concept of specific energy in rock drilling. Int J Rock Mech Min Sci Geomech Abstr 2:57–73

    Article  Google Scholar 

  38. Wang R, Hu ZP, Zhang D, Wang QY (2017) Propagation of the stress wave through the filled joint with linear viscoelastic deformation behavior using time-domain recursive method. Rock Mech Rock Eng 50:3197–3207

    Article  Google Scholar 

  39. Wu LX, Liu SJ, Wu YH, Wang CY (2006) Precursors for rock fracturing and failure-Part I: IRR image abnormalities. Int J Rock Mech Min Sci 43:473–482

    Article  Google Scholar 

  40. Yagiz S (2002) Development of rock fracture and brittleness indices to quantify the effects of rock mass features and toughness in the CSM Model basic penetration for hard rock tunneling machines. Ph.D. Thesis, Department of Mining and Earth Systems Engineering, Colorado School of Mines, Golden, Colorado, USA

  41. Yagiz S (2008) Utilizing rock mass properties for predicting TBM performance in hard rock condition. Tunn Undergr Sp Tech 23(3):326–339

    Article  Google Scholar 

  42. Yagiz S (2009) Assessment of brittleness using rock strength and density with punch penetration test. Tunn Undergr Sp Tech 24(1):66–74

    Article  Google Scholar 

  43. Yagiz S (2017) New equations for predicting the field penetration index of tunnel boring machines in fractured rock mass. Arab J Geosci 10:33

    Article  Google Scholar 

  44. Yagiz S, Karahan H (2011) Prediction of hard rock TBM penetration rate using particle swarm optimization. Int J Rock Mech Min Sci 48:427–433

    Article  Google Scholar 

  45. Yagiz S, Karahan H (2015) Application of various optimization techniques and comparison of their performances for predicting TBM penetration rate in rock mass. Int J Rock Mech Min Sci 80:308–315

    Article  Google Scholar 

  46. Yang HQ, Liu JF, Liu BL (2018a) Investigation on the cracking character of jointed rock mass beneath TBM disc cutter. Rock Mech Rock Eng 51:1263–1277

    Article  Google Scholar 

  47. Yang HQ, Li Z, Jie TQ, Zhang Z (2018b) Effects of joints on the cutting behavior of disc cutter running on the jointed rock mass. Tunn Undergr Sp Tech 81:112–120

    Article  Google Scholar 

  48. Yang HQ, Wang ZH, Song KL (2020) A new hybrid grey wolf optimizer-feature weighted-multiple kernel-support vector regression technique to predict TBM performance. Eng Comput Ger. https://doi.org/10.1007/s00366-020-

    Article  Google Scholar 

  49. Yin P, Wong RHC, Chau KT (2014) Coalescence of two parallel pre-existing surface cracks in granite. Int J Rock Mech Min Sci 68:66–84

    Article  Google Scholar 

  50. Yin LJ, Miao CT, He GW, Dai FC, Gong QM (2016) Study on the influence of joint spacing on rock fragmentation under TBM cutter by linear cutting test. Tunn Undergr Sp Tech 57:137–144

    Article  Google Scholar 

  51. Zhao YR, Yang HQ, Chen ZK, Chen XS, Huang LP, Liu SY (2019) Effects of jointed rock mass and mixed ground conditions on the cutting efficiency and cutter wear of tunnel boring machine. Rock Mech Rock Eng 52:1303–1313

    Article  Google Scholar 

Download references


The financial support from Project supported by graduate research and innovation foundation of Chongqing, China (Grant No. CYB19015) and Natural Science Fund of China (Nos. 51879016) is greatly appreciated.

Author information



Corresponding author

Correspondence to Haiqing Yang.

Ethics declarations

Conflict of Interest

The authors declare that they have no known completing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Yang, H., Haque, E. et al. Effect of Joint Orientation on the Breakage Behavior of Jointed Rock Mass Loaded by Disc Cutters. Rock Mech Rock Eng (2021). https://doi.org/10.1007/s00603-021-02379-1

Download citation


  • Joint orientation
  • Indentation tests
  • Performance
  • Rock breakage processes
  • Cutting efficiency