Adaptive Finite Element–Discrete Element Analysis for the Stress Shadow Effects and Fracture Interaction Behaviours in Three-Dimensional Multistage Hydrofracturing Considering Varying Perforation Cluster Spaces and Fracturing Scenarios of Horizontal Wells

Abstract

Optimization of complex fracture networks improves the fracturing effects and enhances production in multistage hydrofracturing technology. To understand the controlling mechanisms of multistage hydrofracturing in unconventional tight reservoirs, some governing issues, such as hydro-mechanical coupling, stress shadow effects, propagation interaction behaviours of three-dimensional (3D) multiple fractures, and 3D multistage hydrofracturing, should be addressed. However, the characterization of perforation cluster spaces and fracturing scenarios of horizontal wells, which significantly affect the evolution of the stress field and 3D morphology of the fracture network, is a challenge. In this study, to overcome the drawbacks of the traditional finite-element method in simulating 3D fracture propagation, the adaptive finite element–discrete element method is used. This method uses a local remeshing and coarsening strategy to ensure the accuracy of solutions, reliability of the fracture propagation path, and computational efficiency. The study proposes 3D engineering-scale numerical models, considering the crucial hydro-mechanical coupling and fracturing fluid leak-off, to simulate 3D multistage hydrofracturing and fracture interaction behaviours. The numerical results show that the stress shadow effects and fracture interaction behaviours become more intense once the spaces between different propagating fractures become thinner due to superposition and reduction effects in fracturing-induced shear stress variation areas. The alternate fracturing can reduce the stress shadow effects through adjusting the sequence of perforation clusters that are activated and injected with fracturing fluid. When the perforation cluster spaces become narrow, the alternate fracturing scenario can yield more fracturing fracture areas and improve the fracturing effects as compared to sequential and simultaneous fracturing.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

References

  1. Alghannam M, Rahim Z (2014) Optimizing spacing of horizontal multistage fractured wells in gas reservoirs. SPE Saudi Arabia Section Technical Symposium and Exhibition. Soc Pet Eng. SPE-172244-MS 1–11. https://doi.org/10.2118/172244-MS

  2. Azadi H, Khoei AR (2011) Numerical simulation of multiple crack growth in brittle materials with adaptive remeshing. Int J Num Meth Eng 85(8):1017–1048. https://doi.org/10.1002/nme.3002

    Article  Google Scholar 

  3. Bai T, Pollard DD, Gao H (2000) Explanation for fracture spacing in layered materials. Nature 403(6771):753–756. https://doi.org/10.1038/35001550

    Article  Google Scholar 

  4. Bažant ZP, Salviato M, Chau VT et al (2014) Why fracking works J Appl Mech 81(10):1–10. https://doi.org/10.1115/1.4028192

    Article  Google Scholar 

  5. Bohloli B, De Pater CJ (2006) Experimental study on hydraulic fracturing of soft rocks: Influence of fluid rheology and confining stress. J Pet Sci Eng 53(1–2):1–12. https://doi.org/10.1016/j.petrol.2006.01.009

    Article  Google Scholar 

  6. Bunger A, Jeffrey RG, Zhang X (2014) Constraints on simultaneous growth of hydraulic fractures from multiple perforation clusters in horizontal wells. SPE J 19(04):608–620. https://doi.org/10.2118/163860-PA

    Article  Google Scholar 

  7. Carter E (1957) Optimum fluid characteristics for fracture extension. In: Howard G, Fast C (Eds), Drilling and Production Practices. Tulsa, Oklahoma: American Petroleum Institute, API-57–261

  8. Cheng Y (2009) Boundary element analysis of the stress distribution around multiple fractures: implications for the spacing of perforation clusters of hydraulically fractured horizontal wells. Soc Pet Eng, SPE Eastern Regional Meeting. https://doi.org/10.2118/125769-MS

    Google Scholar 

  9. Cheng Y (2012a) Impacts of the number of perforation clusters and cluster spacing on production performance of horizontal shale-gas wells. SPE Res Eval Eng 15(01):31–40. https://doi.org/10.2118/138843-PA

    Article  Google Scholar 

  10. Cheng Y (2012b) Mechanical interaction of multiple fractures-exploring impacts of the selection of the spacing/number of perforation clusters on horizontal shale-gas wells. SPE J 17(04):1–10. https://doi.org/10.2118/125769-pa

    Article  Google Scholar 

  11. Clarkson CR, Beierle JJ (2011) Integration of microseismic and other post-fracture surveillance with production analysis: a tight gas study. J Nat Gas Sci Eng 3(2):382–401. https://doi.org/10.1016/j.jngse.2011.03.003

    Article  Google Scholar 

  12. Crandall D, Moore J, Gill M et al (2017) CT scanning and flow measurements of shale fractures after multiple shearing events. Int J Min Sci Tech 100:177–187. https://doi.org/10.1016/j.ijrmms.2017.10.016

    Article  Google Scholar 

  13. Davies RJ, Mathias SA, Moss J et al (2012) Hydraulic fractures: how far can they go? Mar Petrol Geol 37(1):1–6. https://doi.org/10.1016/j.marpetgeo.2012.04.001

    Article  Google Scholar 

  14. Ding Y, Liu X, Luo P (2017) The analytical model of hydraulic fracture initiation for perforated borehole in fractured formation. J Pet Sci Eng 162:502–512. https://doi.org/10.1016/j.petrol.2017.10.008

    Article  Google Scholar 

  15. Dohmen T, Zhang J, Blangy JP (2014) Measurement and analysis of 3D stress shadowing related to the spacing of hydraulic fracturing in unconventional reservoirs. SPE Annual Technical Conference and Exhibition. Soc Pet Eng. SPE-170924-MS 1–13. https://doi.org/10.2118/170924-MS

  16. ELFEN TGR user and theory manual. (2016) United Kingdom: Rockfield Software Ltd. http://www.rockfield.co.uk

  17. Geertsma J, De Klerk FA (1969) A rapid method of predicting width and extent of hydraulically induced fractures. Soc Pet Eng. SPE-2458-PA 1–11. https://doi.org/10.2118/2458-PA

  18. Ghaderi A, Taheri-Shakib J, Nik M (2018) The distinct element method (DEM) and the extended finite element method (XFEM) application for analysis of interaction between hydraulic and natural fractures. J Pet Sci Eng 171:422–430. https://doi.org/10.1016/j.petrol.2018.06.083

    Article  Google Scholar 

  19. Gholami A, Aghighi MA, Rahman SS (2017) Effect of non-uniform pore pressure fields on hydraulic fracture propagation. J Pet Sci Eng 159:889–902. https://doi.org/10.1016/j.petrol.2017.10.021

    Article  Google Scholar 

  20. Gutierrez R, Sanchez E, Roehl D et al (2019) XFEM modeling of stress shadowing in multiple hydraulic fractures in multi-layered formations. J Nat Gas Sci Eng 70:1–15. https://doi.org/10.1016/j.jngse.2019.102950

    Article  Google Scholar 

  21. He Q, Suorineni FT, Ma T et al (2017) Effect of discontinuity stress shadows on hydraulic fracture re-orientation. Int J Min Sci Tech 91:179–194. https://doi.org/10.1016/j.ijrmms.2016.11.021

    Article  Google Scholar 

  22. Hossain MM, Rahman MK (2008) Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing. J Pet Sci Eng 60(2):86–104. https://doi.org/10.1016/j.petrol.2007.05.007

    Article  Google Scholar 

  23. Hou B, Chen M, Wan C et al (2017) Laboratory studies of fracture geometry in multistage hydraulic fracturing under triaxial stresses. Chem Technol Fuels Oils 53(2):1–8. https://doi.org/10.1007/s10553-017-0797-3

    Article  Google Scholar 

  24. Huang Q, Alvarez NJ, Shabbir A et al (2016) Multiple cracks propagate simultaneously in polymer liquids in tension. Phys Rev Lett 117(8):087801. https://doi.org/10.1103/PhysRevLett.117.087801

    Article  Google Scholar 

  25. Jo H (2012,) Optimizing fracture spacing to induce complex fractures in a hydraulically fractured horizontal wellbore. SPE Americas Unconventional Resources Conference. Soc Pet Eng. SPE-154930-MS 1–14. https://doi.org/10.2118/154930-MS

  26. Ju Y, Liu P, Chen J et al (2016) CDEM-based analysis of the 3D initiation and propagation of hydrofracturing cracks in heterogeneous glutenites. J Nat Gas Sci Eng 35:614–623. https://doi.org/10.1016/j.jngse.2016.09.011

    Article  Google Scholar 

  27. Ju Y, Chen J, Wang Y et al (2018a) Numerical analysis of hydrofracturing behaviors and mechanisms of heterogeneous reservoir glutenite, using the continuum-based discrete element method while considering hydromechanical coupling and leak-off effects. J Geophys Res Solid Earth 123(5):3621–3644. https://doi.org/10.1029/2017JB015092

    Article  Google Scholar 

  28. Ju Y, Wang Y, Chen J et al (2018b) Adaptive finite element-discrete element method for numerical analysis of the multistage hydrofracturing of horizontal wells in tight reservoirs considering pre-existing fractures, hydromechanical coupling, and leak-off effects. J Nat Gas Sci Eng 54:266–282. https://doi.org/10.1016/j.jngse.2018.04.015

    Article  Google Scholar 

  29. Ju Y, Wang Y, Dong H et al (2018c) Numerical analysis of the hydrofracturing behaviour of heterogeneous glutenite considering hydro-mechanical coupling effects based on bonded particle models. Int J Num Anal Methods Geomech 42(13):1493–1515. https://doi.org/10.1002/nag.2801

    Article  Google Scholar 

  30. Ju Y, Wang Y, Xu B et al (2019b) Numerical analysis of the effects of bedded interfaces on hydraulic fracture propagation in tight multilayered reservoirs considering hydro-mechanical coupling. J Pet Sci Eng 178:356–375. https://doi.org/10.1016/j.petrol.2019.03.049

    Article  Google Scholar 

  31. Ju Y, Wang Y, Su C et al (2019a) Numerical analysis of dynamic evolution behaviours of mining-induced stress field and fracture field in layered reservoir using the continuum-based discrete element method. Int J Min Sci Tech 113:191–210. https://doi.org/10.1016/j.ijrmms.2018.11.014

    Article  Google Scholar 

  32. Kresse O, Weng X, Gu H et al (2013) Numerical modeling of hydraulic fractures interaction in complex naturally fractured formations. Rock Mech Rock Eng 46(3):555–568. https://doi.org/10.1007/s00603-012-0359-2

    Article  Google Scholar 

  33. Kumar D, Ghassemi A (2016) A three-dimensional analysis of simultaneous and sequential fracturing of horizontal wells. J Pet Sci Eng 146:1006–1025. https://doi.org/10.1016/j.petrol.2016.07.001

    Article  Google Scholar 

  34. Lecampion B, Desroches J (2015) Simultaneous initiation and growth of multiple radial hydraulic fractures from a horizontal wellbore. J Mech Phys Solids 82:235–258. https://doi.org/10.1016/j.jmps.2015.05.010

    Article  Google Scholar 

  35. Lee NS, Bathe KJ (1994) Error indicators and adaptive remeshing in large deformation finite element analysis. Fin Elem Anal Des 16(2):99–139. https://doi.org/10.1016/0168-874X(94)90044-2

    Article  Google Scholar 

  36. Lisjak A, Mahabadi OK, He L et al (2018) Acceleration of a 2D/3D finite-discrete element code for geomechanical simulations using general purpose GPU computing. Comput Geotech 100:84–96. https://doi.org/10.1016/j.compgeo.2018.04.011

    Article  Google Scholar 

  37. Lolon E, Cipolla C, Weijers L et al (2009) Evaluating horizontal well placement and hydraulic fracture spacing/conductivity in the Bakken Formation, North Dakota. SPE Annual Technical Conference and Exhibition. Soc Pet Eng. SPE-124905-MS 1–12. https://doi.org/10.2118/124905-MS

  38. Manriquez AL, Sepehrnoori K, Cortes A (2017) A novel approach to quantify reservoir pressure along the horizontal section and to optimize multistage treatments and spacing between hydraulic fractures. J Pet Sci Eng 149:579–590. https://doi.org/10.1016/j.petrol.2016.10.068

    Article  Google Scholar 

  39. Manríquez AL (2018) Stress behavior in the near fracture region between adjacent horizontal wells during multistage fracturing using a coupled stress-displacement to hydraulic diffusivity model. J Pet Sci Eng 162:822–834. https://doi.org/10.1016/j.petrol.2017.11.009

    Article  Google Scholar 

  40. Michael RH (2017) Numerical simulation of hydraulic fracturing in tight gas shale reservoirs. Ph.D. Thesis, Leeds Univ, Leeds, UK. http://etheses.whiterose.ac.uk/18351/

  41. Munjiza A (2004) The combined finite-discrete element method. John Wiley and Sons, Ltd. https://doi.org/10.1002/0470020180

    Article  Google Scholar 

  42. Munjiza A, Owen DRJ, Bicanic N (1995) A combined finite-discrete element method in transient dynamics of fracturing solids. Eng Comput 12(2):145–174. https://doi.org/10.1108/02644409510799532

    Article  Google Scholar 

  43. Nordgren RP (1972) Propagation of a Vertical Hydraulic Fracture. Soc Pet Eng. SPE-3009-PA 1–9. https://doi.org/10.2118/3009-PA

  44. Oh HS, Babuska I (1993) The method of auxiliary mapping for the finite element solutions of elasticity problems containing singularities. J Comput Phys 121(2):193–212. https://doi.org/10.1016/S0021-9991(95)90017-9

    Article  Google Scholar 

  45. Palmer ID, Moschovidis ZA, Schaefer A et al (2014) Case histories from fayettville shale: SRV sizes, fracture networks, spacing, aperture widths, and implications for proppant. SPE Unconventional Resources Conference. Soc Pet Eng. SPE-169015-MS 1–26. https://doi.org/10.2118/169015-MS

  46. Paluszny A, Tang XH, Zimmerman RW (2013) Fracture and impulse based finite-discrete element modeling of fragmentation. Comput Mech 52(5):1071–1084. https://doi.org/10.1007/s00466-013-0864-5

    Article  Google Scholar 

  47. Peng P, Ju Y, Wang Y et al (2017) Numerical analysis of the effect of natural microcracks on the supercritical CO2 fracturing crack network of shale rock based on bonded particle models. Int J Num Anal Methods Geomech 41(18):1992–2013. https://doi.org/10.1002/nag.2712

    Article  Google Scholar 

  48. Pons AJ, Karma A (2010) Helical crack-front instability in mixed-mode fracture. Nature 464(7285):85–89. https://doi.org/10.1038/nature08862

    Article  Google Scholar 

  49. Profit M, Dutko M, Yu J et al (2016) Complementary hydro-mechanical coupled finite/discrete element and microseismic modelling to predict hydraulic fracture propagation in tight shale reservoirs. Comput Part Mech 3(2):229–248. https://doi.org/10.1007/s40571-015-0081-4

    Article  Google Scholar 

  50. Rafiee M, Soliman MY, Pirayesh E (2012) Hydraulic fracturing design and optimization: a modification to zipper frac. SPE Annual Technical Conference and Exhibition. Soc Pet Eng. SPE-159786-MS 1–16. https://doi.org/10.2118/159786-MS

  51. Roshan H, Ehsani S, Marjo CE et al (2015) Mechanisms of water adsorption into partially saturated fractured shales: An experimental study. Fuel 159:628–637. https://doi.org/10.1016/j.fuel.2015.07.015

    Article  Google Scholar 

  52. Rothert E, Shapiro SA (2007) Statistics of fracture strength and fluid-induced microseismicity. J Geophys Res Solid Earth 112:1–16. https://doi.org/10.1029/2005JB003959

    Article  Google Scholar 

  53. Roussel NP, Sharma MM (2010) Optimizing fracture spacing and sequencing in horizontal-well fracturing. Soc Pet Eng. SPE-127986-MS 1–16. https://doi.org/10.2118/127986-MS

  54. Roussel NP, Sharma MM (2011) Strategies to minimize frac spacing and stimulate natural fractures in horizontal completions. SPE Annual Technical Conference and Exhibition. Soc Pet Eng. SPE-146104-MS 1–17. https://doi.org/10.2118/146104-MS

  55. Roussel NP, Manchanda R, Sharma MM (2012) Implications of fracturing pressure data recorded during a horizontal completion on stage spacing design. SPE Hydraulic Fracturing Technology Conference. Soc Pet Eng. SPE-152631-MS 1–14. https://doi.org/10.2118/152631-MS

  56. Saberhosseini SE, Ahangari K, Mohammadrezaei H (2019) Optimization of the horizontal-well multiple hydraulic fracturing operation in a low-permeability carbonate reservoir using fully coupled XFEM model. Int J Min Sci Tech 114:33–45. https://doi.org/10.1016/j.ijrmms.2018.09.007

    Article  Google Scholar 

  57. Sarmadivaleh M, Rasouli V (2015) Test design and sample preparation procedure for experimental investigation of hydraulic fracturing interaction modes. Rock Mech Rock Eng 48(1):93–105. https://doi.org/10.1007/s00603-013-0543-z

    Article  Google Scholar 

  58. Sobhaniaragh B, Trevelyan J, Mansur WJ et al (2017) Numerical simulation of MZF design with non-planar hydraulic fracturing from multi-lateral horizontal wells. J Nat Gas Sci Eng 46:93–107. https://doi.org/10.1016/j.jngse.2017.07.005

    Article  Google Scholar 

  59. Sobhaniaragh B, Nguyen VP, Mansur WJ et al (2018b) Pore pressure and stress coupling in closely-spaced hydraulic fracturing designs on adjacent horizontal wellbores. European J Mech A/Solids 67:18–33. https://doi.org/10.1016/j.euromechsol.2017.08.010

    Article  Google Scholar 

  60. Sobhaniaragh B, Mansur WJ, Peters FC (2018a) The role of stress interference in hydraulic fracturing of horizontal wells. Int J Min Sci Tech 106:153–164. https://doi.org/10.1016/j.ijrmms.2018.04.024

    Article  Google Scholar 

  61. Steacy S, Gomberg J, Cocco M (2005) Introduction to special section: Stress transfer, earthquake triggering, and time-dependent seismic hazard. J Geophys Res Solid Earth 110:1–12. https://doi.org/10.1029/2005JB003692

    Article  Google Scholar 

  62. Sun J, Schechter DS (2014) Optimization-based unstructured meshing algorithms for simulation of hydraulically and naturally fractured reservoirs with variable distribution of fracture aperture, spacing, length and strike. SPE Annual Technical Conference and Exhibition. Soc Pet Eng. SPE-170703-MS 1–27. https://doi.org/10.13140/2.1.2999.8884

  63. Sun J, Gamboa ES, Schechter D et al (2016) An integrated workflow for characterization and simulation of complex fracture networks utilizing microseismic and horizontal core data. J Nat Gas Sci Eng 34:1347–1360. https://doi.org/10.1016/j.jngse.2016.08.024

    Article  Google Scholar 

  64. Taghichian A, Zaman M, Devegowda D (2014) Stress shadow size and aperture of hydraulic fractures in unconventional shales. J Pet Sci Eng 124:209–221. https://doi.org/10.1016/j.petrol.2014.09.034

    Article  Google Scholar 

  65. Tian W, Li P, Dong Y et al (2019) Numerical simulation of sequential, alternate and modified zipper hydraulic fracturing in horizontal wells using XFEM. J Pet Sci Eng 183:1–12. https://doi.org/10.1016/j.petrol.2019.106251

    Article  Google Scholar 

  66. Torcuk MA, Kurtoglu B, Alharthy N et al (2013) Analytical solutions for multiple matrix in fractured reservoirs: Application to conventional and unconventional reservoirs. SPE J 18(05):969–981. https://doi.org/10.2118/164528-PA

    Article  Google Scholar 

  67. Wang H (2016) Numerical investigation of fracture spacing and sequencing effects on multiple hydraulic fracture interference and coalescence in brittle and ductile reservoir rocks. Eng Frac Mech 157:107–124. https://doi.org/10.1016/j.engfracmech.2016.02.025

    Article  Google Scholar 

  68. Wang Y, Liu Z, Yang H et al (2016) FE analysis of rock with hydraulic-mechanical coupling based on continuum damage evolution. Math Probl Eng 2016:1–9. https://doi.org/10.1155/2016/8534965

    Article  Google Scholar 

  69. Wang W, Shahvali M, Su Y (2015) A semi-analytical fractal model for production from tight oil reservoirs with hydraulically fractured horizontal wells. Fuel 158:612–618. https://doi.org/10.1016/j.fuel.2015.06.008

    Article  Google Scholar 

  70. Wang Y, Liu Z, Yang H et al (2017a) Finite element analysis for wellbore stability of transversely isotropic rock with hydraulic-mechanical-damage coupling. Sci Chin Tech Sci 60(1):133–145. https://doi.org/10.1007/s11431-016-0007-3

    Article  Google Scholar 

  71. Wang Y, Zhuang Z, Liu Z et al (2017b) Finite element analysis for inclined wellbore stability of transversely isotropic rock with HMCD coupling based on weak plane strength criterion. Sci Chin Tech Sci 60(4):624–637. https://doi.org/10.1007/s11431-016-0460-2

    Article  Google Scholar 

  72. Wang Y, Ju Y, Yang Y (2018a) Adaptive finite element-discrete element analysis for microseismic modelling of hydraulic fracture propagation of perforation in horizontal well considering pre-existing fractures. Shock Vib 2018:1–14. https://doi.org/10.1155/2018/2748408

    Article  Google Scholar 

  73. Wang Y, Ju Y, Zhuang Z et al (2018b) Adaptive finite element analysis for damage detection of non-uniform Euler-Bernoulli beams with multiple cracks based on natural frequencies. Eng Comput 35(3):1203–1229. https://doi.org/10.1108/EC-05-2017-0176

    Article  Google Scholar 

  74. Wang Y, Ju Y, Chen J et al (2019) Adaptive finite element-discrete element analysis for the multistage supercritical CO2 fracturing and microseismic modelling of horizontal wells in tight reservoirs considering pre-existing fractures and thermal-hydro-mechanical coupling. J Nat Gas Sci Eng 61:251–269. https://doi.org/10.1016/j.jngse.2018.11.022

    Article  Google Scholar 

  75. Williams BB (1970) Fluid loss from hydraulically induced fractures. J Pet Tech 22(07):882–888. https://doi.org/10.2118/2769-PA

    Article  Google Scholar 

  76. Wong SW, Geilikman M, Xu G (2013) Interaction of multiple hydraulic fractures in horizontal wells. SPE J. https://doi.org/10.2118/163982-MS

    Article  Google Scholar 

  77. Wu K, Olson JE (2016) Mechanisms of simultaneous hydraulic-fracture propagation from multiple perforation clusters in horizontal wells. SPE J 21(03):1–9. https://doi.org/10.2118/178925-PA

    Article  Google Scholar 

  78. Wu K, Olson J, Balhoff MT et al (2017) Numerical analysis for promoting uniform development of simultaneous multiple-fracture propagation in horizontal wells. SPE Prod Oper 32(01):41–50. https://doi.org/10.2118/174869-PA

    Article  Google Scholar 

  79. Wu Z, Zhou Y, Fan L (2019) A fracture aperture dependent thermal-cohesive coupled model for modelling thermal conduction in fractured rock mass. Comput Geotech 114:1–16. https://doi.org/10.1016/j.compgeo.2019.103108

    Article  Google Scholar 

  80. Yoon JS, Zimmermann G, Zang A (2015) Numerical investigation on stress shadowing in fluid injection-induced fracture propagation in naturally fractured geothermal reservoirs. Rock Mech Rock Eng 48(4):1439–1454. https://doi.org/10.1007/s00603-014-0695-5

    Article  Google Scholar 

  81. Yu W, Sepehrnoori K (2013) Optimization of multiple hydraulically fractured horizontal wells in unconventional gas reservoirs. J Pet Eng. https://doi.org/10.1155/2013/151898

    Article  Google Scholar 

  82. Yu W, Zhang T, Du S et al (2015) Numerical study of the effect of uneven proppant distribution between multiple fractures on shale gas well performance. Fuel 142:189–198. https://doi.org/10.1016/j.fuel.2014.10.074

    Article  Google Scholar 

  83. Yuan S, Wang Y, Ye K (2013) An adaptive FEM for buckling analysis of nonuniform Bernoulli-Euler members via the element energy projection technique. Math Prob Eng 2013:1–6. https://doi.org/10.1155/2013/461832

    Article  Google Scholar 

  84. Yuan B, Su Y, Moghanloo RG et al (2015) A new analytical multi-linear solution for gas flow toward fractured horizontal wells with different fracture intensity. J Nat Gas Sci Eng 23:227–238. https://doi.org/10.1016/j.jngse.2015.01.045

    Article  Google Scholar 

  85. Yuan S, Ye K, Wang Y et al (2017) Adaptive finite element method for eigensolutions of regular second and fourth order Sturm-Liouville problems via the element energy projection technique. Eng Comput 34(8):2862–2876. https://doi.org/10.1108/EC-03-2017-0090

    Article  Google Scholar 

  86. Zhang ZF, Eckert J (2005) Unified tensile fracture criterion. Phys Rev Lett 94(9):094301. https://doi.org/10.1103/PhysRevLett.94.094301

    Article  Google Scholar 

  87. Zhang X, Jeffrey R (2012) Fluid-driven multiple fracture growth from a permeable bedding plane intersected by an ascending hydraulic fracture. J Geophys Res Solid Earth 117:1–12. https://doi.org/10.1029/2012JB009609

    Article  Google Scholar 

  88. Zhang J, Ouyang L, Zhu D et al (2015) Experimental and numerical studies of reduced fracture conductivity due to proppant embedment in the shale reservoir. J Pet Sci Eng 130:37–45. https://doi.org/10.1016/j.petrol.2015.04.004

    Article  Google Scholar 

  89. Zheng D, Yuan B, Moghanloo RG (2017) Analytical modeling dynamic drainage volume for transient flow towards multi-stage fractured wells in composite shale reservoirs. J Pet Sci Eng 149:756–764. https://doi.org/10.1016/j.petrol.2016.11.023

    Article  Google Scholar 

  90. Ziarani AS, Chen C, Cui A et al (2014) Fracture and wellbore spacing optimization in multistage fractured horizontal wellbores: Learnings from our experience on Canadian unconventional resources. International Petroleum Technology Conference. IPTC-17853-MS 1–28. https://doi.org/10.2523/IPTC-17853-MS

  91. Zienkiewicz OC, Taylor RL, Zhu J (2015) The finite element method: its basis fundamentals (7th edition). Elsevier (Singapore), Pte Ltd. https://www.elsevier.com/978-1-85617-633-0

Download references

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (Grants 51674251, 41877275, and 51608301), the Innovation Teams of the Ten-Thousand Talents Program sponsored by the Ministry of Science and Technology of China (Grant 2016RA4067), the Yue Qi Young Scholar Project Foundation of China University of Mining and Technology, Beijing (grant 2019QN14), Fundamental Research Funds for the Central Universities, Ministry of Education of China (Grant 2019QL02), Teaching Reform and Research Projects of Undergraduate Education of China University of Mining and Technology, Beijing (Grants J200709 and J190701), and the Open Fund of Tianjin Key Lab of Soft Soil Characteristic and Engineering Environment (Grant 2017SCEEKL003).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yang Ju.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ju, Y., Zhang, H. et al. Adaptive Finite Element–Discrete Element Analysis for the Stress Shadow Effects and Fracture Interaction Behaviours in Three-Dimensional Multistage Hydrofracturing Considering Varying Perforation Cluster Spaces and Fracturing Scenarios of Horizontal Wells. Rock Mech Rock Eng (2021). https://doi.org/10.1007/s00603-021-02364-8

Download citation

Keywords

  • Multistage hydrofracturing
  • Stress shadow effects
  • 3D fracture interaction
  • Cluster space
  • Hydro-mechanical coupling
  • Adaptive finite element–discrete element method