Estimating the Uniaxial Compressive Strength of Argillites Using Brazilian Tensile Strength, Ultrasonic Wave Velocities, and Elastic Properties

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

modified from Iyare et al. 2020). a NHS7; b–f NHS1, NHS3, NHS4, and NHS14; g NHS13 and h NHS10. The lithofacies are color coded: Lithofacies a = green; Lithofacies b = red; Lithofacies c = black; and Lithofacies d = blue. Qz Quartz, Cm Chert matrix, Nc Nodular Chert, Op Oil particle, Ca Calcite filled fracture, CQ Calcite-Quartz matrix, Fo Oil-filled fracture, Os Oil stain, Fm Foraminifera, Bc Bioclasts (color figure online)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9



Sample length


Travel time

V p :

P-wave velocity

V s :

S-wave velocity

E s :

Static Young’s modulus

E d :

Dynamic Young’s modulus

v s :

Static Poisson’s ratio

v d :

Static Poisson’s ratio



ρB :

Bulk density


Uniaxial compressive strength

TS :

Tensile strength

Si :


Cal :


Clay :



  1. Aladejare AE (2020) Evaluation of empirical estimation of uniaxial compressive strength of rock using measurements from index and physical tests. J Rock Mech Geotech Eng 12(2):256–268.

    Article  Google Scholar 

  2. Arslan A, Koca Y, Aydogmus T, Klapperich H, Yılmaz H (2008) Correlation of unconfined compressive strength with young’s modulus and poisson’s ratio in gypsum from sivas (Turkey). Rock Mech Rock Eng 41:941–950.

    Article  Google Scholar 

  3. ASTM D3967, S. (2008) Standard test method for splitting tensile strength of intact rock core specimens (ASTM D3967–08). Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken

    Google Scholar 

  4. ASTM D7012–14, S. (2014) Standard test methods for compressive strength and elastic moduli of intact rock core specimens under varying states of stress and temperatures. ASTM International, West Conshohocken

    Google Scholar 

  5. Azimian A, Ajalloeian R, Fatehi L (2014) An empirical correlation of uniaxial compressive strength with P-wave velocity and point load strength index on marly rocks using statistical method. Geotech Geol Eng 32(1):205–214

    Article  Google Scholar 

  6. Barresi T, Nelson J, Alldrick D, Dostal J (2004) Pillow basalt ridge facies: detailed mapping of eskay creek-equivalent stratigraphy in northwestern british columbia. Geol Fieldwork 2004:2005

    Google Scholar 

  7. Baud P, Wong T-F, Zhu W (2014) Effects of porosity and crack density on the compressive strength of rocks. Int J Rock Mech Min Sci 67:202–211.

    Article  Google Scholar 

  8. Blake OO, Ramsook R, Faulkner DR, Iyare UC (2020) The effect of effective pressure on the relationship between static and dynamic young’s moduli and poisson’s ratio of naparima hill formation mudstones. Rock Mech Rock Eng.

    Article  Google Scholar 

  9. Çobanoğlu İ, Çelik SB (2008) Estimation of uniaxial compressive strength from point load strength, schmidt hardness and P-wave velocity. Bull Eng Geol Env 67(4):491–498

    Article  Google Scholar 

  10. Cuisinier O, Deneele D, Masrouri F (2009) Shear strength behaviour of compacted clayey soils percolated with an alkaline solution. Eng Geol 108(3–4):177–188

    Article  Google Scholar 

  11. Haig DW, Bandini AN (2013) Middle Jurassic Radiolaria from a siliceous argillite block in a structural melange zone near Viqueque, Timor Leste: Paleogeographic implications. J Asian Earth Sci 75:71–81.

    Article  Google Scholar 

  12. Inoue, M., and M. Ohomi (1981), Relation Between Uniaxial Compressive Strength And Elastic Wave Velocity of Soft Rock, in ISRM International Symposium, edited, p. 5, International Society for Rock Mechanics and Rock Engineering, Tokyo, Japan.

  13. ISRM (1978) Suggested methods for the quantitative description of discontinuities in rock masses. ISRM Int J Rock Mech Min Sci Geomech Abstr 15(6):319–368

    Article  Google Scholar 

  14. ISRM (1983) Suggested methods for determining the strength of rock materials in triaxial compression: revised version. Int J Rock Mech Min Sci Geomech Abstr 20(6):285–290.

    Article  Google Scholar 

  15. Iyare UC, Ramsook R, Blake OO, Faulkner DR (2020) Petrographical and petrophysical characterization of the late cretaceous naparima hill formation, central range, trinidad, West Indies. Int J Coal Geol 230:103592.

    Article  Google Scholar 

  16. Jamshidi A, Zamanian H, Zarei Sahamieh R (2018) The effect of density and porosity on the correlation between uniaxial compressive strength and P-wave velocity. Rock Mech Rock Eng 51(4):1279–1286.

    Article  Google Scholar 

  17. Jia Y, Bian H, Duveau G, Su K, Shao J-F (2009) Numerical modelling of in situ behaviour of the callovo-oxfordian argillite subjected to the thermal loading. Eng Geol 109(3–4):262–272

    Article  Google Scholar 

  18. Kahraman S, Gunaydin O, Fener M (2005) The effect of porosity on the relation between uniaxial compressive strength and point load index. Int J Rock Mech Min Sci 42:584–589.

    Article  Google Scholar 

  19. Karaman K, Cihangir F, Ercikdi B, Kesimal A, Demirel S (2015) Utilization of the Brazilian test for estimating the uniaxial compressive strength and shear strength parameters. J S Afr Inst Min Metall 115:185–192.

    Article  Google Scholar 

  20. Lashkaripour, G. R., and E. K. S. Passaris (1995), Correlations Between Index Parameters And Mechanical Properties of Shales, in 8th ISRM Congress, edited, p. 5, International Society for Rock Mechanics and Rock Engineering, Tokyo, Japan

  21. Misra S (1971) Stratigraphy and depositional history of late Precambrian coelenterate-bearing rocks, southeastern Newfoundland. Geol Soc Am Bull 82(4):979–988

    Article  Google Scholar 

  22. Najibi AR, Ghafoori M, Lashkaripour GR, Asef MR (2015) Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. J Petrol Sci Eng 126:78–82

    Article  Google Scholar 

  23. Nazir R, Momeni E, Jahed Armaghani D, Mohd Amin M (2013) Correlation between unconfined compressive strength and indirect tensile strength of limestone rock samples. Electron J Geotech Eng 18:1737–1746

    Google Scholar 

  24. Ng I-T, Yuen K-V, Lau C-H (2015) Predictive model for uniaxial compressive strength for Grade III granitic rocks from Macao. Eng Geol 199:28–37.

    Article  Google Scholar 

  25. Palchik V, Hatzor YH (2004) The influence of porosity on tensile and compressive strength of porous chalks. Rock Mech Rock Eng 37:331–341.

    Article  Google Scholar 

  26. Ribeiro PCPDS, MM Oliveira, P Nelson (2016) Correlation between Uniaxial Compressive Strength and Brazilian Tensile Strength Using Different Rock Types, in ISRM VII Brazilian Symposium on Rock Mechanics - SBMR 2016, edited, p. 8, International Society for Rock Mechanics and Rock Engineering, Belo Horizonte, Minas Gerais, Brazil

  27. Rodnikova R, Sevost’yanov K, Taboyakov AY (1968) Structural-formation connection between southern Sakhalin Island and Hokkaido Island in relation to hydrocarbon potential. Int Geol Rev 10(7):749–760

    Article  Google Scholar 

  28. Roser B, Grapes R (1990) Geochemistry of a metabasite—chert—coloured-argillite—turbidite association at Red Rocks, Wellington, New Zealand. NZ J Geol Geophys 33(2):181–191

    Article  Google Scholar 

  29. Sample JC (1990) The effect of carbonate cementation of underthrust sediments on deformation styles during underplating. J Geophy Res Solid Earth 95(B6):9111–9121.

    Article  Google Scholar 

  30. Snyder WS, Brueckner HK, Schweickert RA (1983) Deformational styles in the Monterey Formation and other siliceous sedimentary rocks. In: Isaacs CM, Garrison RE (eds) Petroleum generation and occurrence in the Miocene Monterey Formation. Pacific Section, Society of Economic Paleontologists and Mineralogists, Los Angeles, California, pp 151–170

    Google Scholar 

  31. Spiller FC (1996) Late Paleozoic radiolarians from the Bentong-Raub suture zone Peninsular Malaysia. Island Arc 5(2):91–103

    Article  Google Scholar 

  32. Yurochko A (1982) Composition and physical properties of siliceous and clay-siliceous reservoir rock in the Okruzhnoye oil field (Sakhalin Island). Int Geol Rev 24(11):1263–1268

    Article  Google Scholar 

  33. Zhang F, Hu D, Xie S, Shao J-F (2014) Influences of temperature and water content on mechanical property of argillite. Eur J Environ Civil Eng 18(2):173–189

    Article  Google Scholar 

Download references


We would like to thank the Ministry of Energy and Energy Industries, Trinidad and Tobago, Engineering Institute, Faculty of Engineering, and Campus Research and Publication Fund Committee, University of the West Indies, St. Augustine Campus, for funding this research.

Author information



Corresponding author

Correspondence to O. O. Blake.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iyare, U.C., Blake, O.O. & Ramsook, R. Estimating the Uniaxial Compressive Strength of Argillites Using Brazilian Tensile Strength, Ultrasonic Wave Velocities, and Elastic Properties. Rock Mech Rock Eng (2021).

Download citation


  • Uniaxial compressive strength
  • Brazilian tensile strength
  • P-wave and S-wave velocities
  • Elastic properties
  • Argillites