Comparative Investigation on the Compression–Shear and Tension–Shear Behaviour of Sandstone at Different Shearing Rates

Abstract

Direct shear tests on rocks under compression–shear stress conditions have been widely conducted, whereas few have been performed under tension–shear stress conditions. However, rocks exhibit tension–shear failures in many scenarios, such as in the excavation disturbed zone in deep underground caverns and high slopes. A series of direct shear tests were performed with cuboid sandstone specimens under different normal tensile stresses (σn = − 3, − 2, and − 1 MPa) and compressive stresses (σn = 1, 3, and 5 MPa) at different shearing rates (v = 0.2, 1, 5, and 10 mm/min). The tension–shear tests were performed using an auxiliary device in combination with a compression–shear testing machine. The results showed that the fracture, shear stress–displacement curve, shear stiffness and shear strength were affected by both σn and v, and the differences in these mechanical behaviour between compression–shear and tension–shear cases were analysed in detail. The shear strength had a nonlinear relationship with both σn and v in the full region of tested normal stress (namely, the normal stress range from tension to low compression). The Hoek–Brown criterion \((\tau = A(\sigma_{{\text{n}}} - \sigma_{{\text{t}}} )^{B} )\) considering the shearing rate effect (the relationship between parameter A (B) and shearing rate v is represented by a natural logarithm function) was proposed as the optimal shearing rate-dependent strength criterion for sandstone in the tested normal stress range.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Abbreviations

σ n :

Normal stress

σ t :

Tensile strength

σ cc :

Crack closure stress

σ ci :

Crack initiation stress

σ cd :

Crack damage stress

τ :

Shear strength

τ′ :

Residual shear strength

v :

Shearing rate

φ :

Internal friction angle

c :

Cohesion

φ′ :

Residual friction angle

k elastic :

Shear stiffness in the elastic deformation stage

k average :

Pre-peak average shear stiffness

μ :

Coefficient of friction on the crack face

\({\sigma_{{\text{c}}}^{^{\prime}} }\) :

Critical macroscopic compressive stress needed for closing the crack

m :

Material constant of Hoek–Brown criterion

A, B :

Fitting parameters of Hoek–Brown criterion

References

  1. Aimone-Martin CT, Oravecz KI, Nytra TK (1997) A mechanical device for the measurement of combined shear and tension in rocks. Int J Rock Mech Min Sci 34(1):147–151. https://doi.org/10.1016/S1365-1609(97)80041-X

    Article  Google Scholar 

  2. Aliha MRM, Ayatollahi MR, Akbardoost J (2012) Typical upper bound–lower bound mixed mode fracture resistance envelopes for rock material. Rock Mech Rock Eng 45(1):65–74. https://doi.org/10.1007/s00603-011-0167-0

    Article  Google Scholar 

  3. Al-Shayea N (2002) Comparing reservoir and outcrop specimens for mixed mode I–II fracture toughness of a limestone rock formation at various conditions. Rock Mech Rock Eng 35(4):271–297. https://doi.org/10.1007/s00603-002-0027-z

    Article  Google Scholar 

  4. ASTM D5607–08 (2008) Standard test method for performing laboratory direct shear strength tests of rock specimens under constant normal force. ASTM International, West Conshohocken

    Google Scholar 

  5. Atapour H, Moosavi M (2014) The influence of shearing velocity on shear behavior of artificial joints. Rock Mech Rock Eng 47(5):1745–1761. https://doi.org/10.1007/s00603-013-0481-9

    Article  Google Scholar 

  6. Barbero M, Barla G, Zaninetti A (1996) Dynamic shear strength of rock joints subjected to impulse loading. Int J Rock Mech Min Sci 33(2):141–151. https://doi.org/10.1016/0148-9062(95)00049-6

    Article  Google Scholar 

  7. Bobich JK (2005) Experimental analysis of the extension to shear fracture transition in Berea sandstone. MS thesis, Texas A & M University.

  8. Brace WF (1964) Brittle fracture of rocks. In: Judd WR (ed) State of stress in the earth's crust. American Elsevier, New York, pp 111–180

    Google Scholar 

  9. Cadoni E (2010) Dynamic characterization of orthogenesis rock subjected to intermediate and high strain rates in tension. Rock Mech Rock Eng 43(6):667–676. https://doi.org/10.1007/s00603-010-0101-x

    Article  Google Scholar 

  10. Cai M, Liu D (2009) Study of failure mechanisms of rock under compressive–shear loading using real-time laser holography. Int J Rock Mech Min Sci 46(1):59–68. https://doi.org/10.1016/j.ijrmms.2008.03.010

    Article  Google Scholar 

  11. Cen DF, Huang D (2017) Direct shear tests of sandstone under constant normal tensile stress condition using a simple auxiliary device. Rock Mech Rock Eng 50(6):1425–1438. https://doi.org/10.1007/s00603-017-1179-1

    Article  Google Scholar 

  12. Cen DF, Huang D, Song YX, Jiang QH (2020) Direct tensile behavior of limestone and sandstone with bedding planes at different strain rates. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-020-02070-x

    Article  Google Scholar 

  13. Chen W, Konietzky H, Tan X, Frühwirt T (2016) Pre-failure damage analysis for brittle rocks under triaxial compression. Comput Geotech 74:45–55. https://doi.org/10.1016/j.compgeo.2015.11.018

    Article  Google Scholar 

  14. Cho N, Martin CD, Sego DC (2008) Development of a shear zone in brittle rock subjected to direct shear. Int J Rock Mech Min Sci 45(8):1335–1346. https://doi.org/10.1016/j.ijrmms.2008.01.019

    Article  Google Scholar 

  15. Crawford AM, Curran JH (1981) The influence of shear velocity on the frictional resistance of rock discontinuities. Int J Rock Mech Min Sci Geomech Abstr 18(6):505–515. https://doi.org/10.1016/0148-9062(81)90514-3

    Article  Google Scholar 

  16. Dai F, Huang S, Xia K, Tan Z (2010) Some fundamental issues in dynamic compression and tension tests of rocks using split Hopkinson pressure bar. Rock Mech Rock Eng 43(6):657–666. https://doi.org/10.1007/s00603-010-0091-8

    Article  Google Scholar 

  17. Engelder T (1999) Transitional-tensile fracture propagation: a status report. J Struct Geol 21(8):1049–1055. https://doi.org/10.1016/S0191-8141(99)00023-1

    Article  Google Scholar 

  18. Ferrill DA, Mcginnis RN, Morris AP, Smart KJ (2012) Hybrid failure: field evidence and influence on fault refraction. J Struct Geol 42:140–150. https://doi.org/10.1016/j.jsg.2012.05.012

    Article  Google Scholar 

  19. Frew DJ, Akers SA, Chen W, Green ML (2010) Development of a dynamic triaxial Kolsky bar. Meas Sci Technol 21(10):105704–105713. https://doi.org/10.1088/0957-0233/21/10/105704

    Article  Google Scholar 

  20. Fuenkajorn K, Kenkhunthod N (2010) Influence of loading rate on deformability and compressive strength of three Thai sandstones. Geotech Geol Eng 28(28):707–715. https://doi.org/10.1007/s10706-010-9331-7

    Article  Google Scholar 

  21. Fukui K, Okubo S, Ogawa A (2004) Some aspects of loading-rate dependency of Sanjome andesite strengths. Int J Rock Mech Min Sci 41(7):1215–1219. https://doi.org/10.1016/j.ijrmms.2004.06.001

    Article  Google Scholar 

  22. Gong FQ, Zhao GF (2013) Dynamic indirect tensile strength of sandstone under different loading rates. Rock Mech Rock Eng 47(6):2271–2278. https://doi.org/10.1007/s00603-013-0503-7

    Article  Google Scholar 

  23. Goodman RE (1989) Introduction to rock mechanics, 2nd edn. Wiley, New York, pp 80–83

    Google Scholar 

  24. Haimson B, Bobet A (2012) Introduction to suggested methods for failure criteria. Rock Mech Rock Eng 45(6):973–974. https://doi.org/10.1007/s00603-012-0274-6

    Article  Google Scholar 

  25. Hoek E, Brown ET (1980) Empirical strength criterion for rock masses. J Geotech Eng Div 106(9):1013–1035. https://doi.org/10.1016/0148-9062(81)90766-X

    Article  Google Scholar 

  26. Hoek E, Martin CD (2014) Fracture initiation and propagation in intact rock—a review. J Rock Mech Geotech Eng 6:287–300. https://doi.org/10.1016/j.jrmge.2014.06.001

    Article  Google Scholar 

  27. Huang RQ, Huang D (2014) Evolution of rock cracks under unloading condition. Rock Mech Rock Eng 47(2):453–466. https://doi.org/10.1007/s00603-013-0429-0

    Article  Google Scholar 

  28. Huang D, Zhu TT (2018) Experimental and numerical study on the strength and hybrid fracture of sandstone under tension-shear stress. Eng Fract Mech 200:387–400. https://doi.org/10.1016/j.engfracmech.2018.08.012

    Article  Google Scholar 

  29. Huang D, Zhu TT (2019) Experimental study on the shear mechanical behavior of sandstone under normal tensile stress using a new double-shear testing device. Rock Mech Rock Eng 52:3467–3474. https://doi.org/10.1007/s00603-019-01762-3

    Article  Google Scholar 

  30. Huang RQ, Wang XN, Chan LS (2001) Triaxial unloading test of rocks and its implication for rock burst. Bull Eng Geol Environ 60(1):37–41. https://doi.org/10.1007/s100640000082

    Article  Google Scholar 

  31. Huang S, Feng XT, Xia K (2011) A dynamic punch method to quantify the dynamic shear strength of brittle solids. Rev Sci Instrum 82(5):053901–053905. https://doi.org/10.1063/1.3585983

    Article  Google Scholar 

  32. Huang S, Xia K, Dai F (2012) Establishment of a dynamic Mohr–Coulomb failure criterion for rocks. Int J Nonlin Sci Numer Simul 13(1):55–60. https://doi.org/10.1515/ijnsns.2011.120

    Article  Google Scholar 

  33. Huang D, Li YQ, Song YX, Xu Q, Pei XJ (2019) Insights into the catastrophic Xinmo rock avalanche in Maoxian county, China: combined effects of historical earthquakes and landslide amplification. Eng Geol 258:105158. https://doi.org/10.1016/j.enggeo.2019.105158

    Article  Google Scholar 

  34. Li HB, Zhao J, Li TJ (1999) Triaxial compression tests of a granite at different strain rates and confining pressures. Int J Rock Mech Min Sci 36(8):1057–1063. https://doi.org/10.1016/S1365-1609(99)00120-3

    Article  Google Scholar 

  35. Li H, Li J, Liu B, Li J, Li S, Xia X (2013) Direct tension test for rock material under different strain rates at quasi-static loads. Rock Mech Rock Eng 46(5):1247–1254. https://doi.org/10.1007/s00603-013-0406-7

    Article  Google Scholar 

  36. Li Y, Huang D, Li X (2014) Strain rate dependency of coarse crystal marble under uniaxial compression: strength, deformation and strain energy. Rock Mech Rock Eng 47(4):1153–1164. https://doi.org/10.1007/s00603-013-0472-x

    Article  Google Scholar 

  37. Lin Q, Fakhimi A, Haggerty M, Labuz JF (2009) Initiation of tensile and mixed-mode fracture in sandstone. Int J Rock Mech Min Sci 46(3):489–497. https://doi.org/10.1016/j.ijrmms.2008.10.008

    Article  Google Scholar 

  38. Martin CD, Christiansson R (2009) Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock. Int J Rock Mech Min Sci 46(2):219–228. https://doi.org/10.1016/j.ijrmms.2008.03.001

    Article  Google Scholar 

  39. Nicksiar M, Martin CD (2013) Crack initiation stress in low porosity crystalline and sedimentary rocks. Eng Geol 154:64–76. https://doi.org/10.1016/j.enggeo.2012.12.007

    Article  Google Scholar 

  40. NSPRC GBT50266-2013 (2013) Standard for test methods of engineering rock mass. National Standard of the People’s Republic of China (in Chinese)

  41. Okubo S, Hashiba K, Fukui K (2013) Loading rate dependency of the strengths of some Japanese rocks. Int J Rock Mech Min Sci 58(1):180–185. https://doi.org/10.1016/j.ijrmms.2012.09.003

    Article  Google Scholar 

  42. Patel S, Martin CD (2018) Application of flattened Brazilian test to investigate rocks under confined extension. Rock Mech Rock Eng 51(4):3719–3736. https://doi.org/10.1007/s00603-018-1559-1

    Article  Google Scholar 

  43. Paterson MS, Wong TF (2005) Experimental rock deformation—the brittle field, 2nd edn. Springer, New York, pp 49–54

    Google Scholar 

  44. Peng J, Rong G, Cai M, Yao M, Zhou C (2016) Comparison of mechanical properties of undamaged and thermal-damaged coarse marbles under triaxial compression. Int J Rock Mech Min Sci 83(4):135–139. https://doi.org/10.1016/j.ijrmms.2015.12.016

    Article  Google Scholar 

  45. Petit JP (1988) Normal stress dependent rupture morphology in direct shear tests on sandstone with applications to some natural fault surface features. Int J Rock Mech Min Sci Geomech Abstr 25(6):411–419. https://doi.org/10.1016/0148-9062(88)90981-3

    Article  Google Scholar 

  46. Ramsey JM, Chester FM (2004) Hybrid fracture and the transition from extension fracture to shear fracture. Nature 428(6978):63–66. https://doi.org/10.1038/nature02333

    Article  Google Scholar 

  47. Ren L, Xie LZ, Xie HP, Ai T, He B (2016) Mixed-mode fracture behavior and related surface topography feature of a typical sandstone. Rock Mech Rock Eng 49(8):3137–3153. https://doi.org/10.1007/s00603-016-0959-3

    Article  Google Scholar 

  48. Rodriguez E (2005) A microstructural study of the extension-to-shear fracture transition in Carrara Marble. MS thesis, Texas A & M University.

  49. Singh TN, Verma AK, Kumar T, Dutt A (2011) Influence of shear velocity on frictional characteristics of rock surface. J Earth Syst Sci 120(1):183–191. https://doi.org/10.1007/s12040-011-0009-1

    Article  Google Scholar 

  50. Tang ZC, Wong LNY (2016) Influences of normal loading rate and shear velocity on the shear behavior of artificial rock joints. Rock Mech Rock Eng 49(6):2165–2172. https://doi.org/10.1007/s00603-015-0822-y

    Article  Google Scholar 

  51. Turichshev A, Hadjigeorgiou J (2016) Triaxial compression experiments on intact veined andesite. Int J Rock Mech Min Sci 86:179–193. https://doi.org/10.1016/j.ijrmms.2016.04.012

    Article  Google Scholar 

  52. USACE (1980) Method of test for direct shear strength of rock core specimens. United States Army Corps of Engineers, Vicksburg

    Google Scholar 

  53. Wang G, Zhang X, Jiang Y, Wu X, Wang S (2016) Rate-dependent mechanical behavior of rough rock joints. Int J Rock Mech Min Sci 83:231–240. https://doi.org/10.1016/j.ijrmms.2015.10.013

    Article  Google Scholar 

  54. Wibberley CAJ, Petit JP, Rives T (2000) Micromechanics of shear rupture and the control of normal stress. J Struct Geol 22(4):411–427. https://doi.org/10.1016/S0191-8141(99)00158-3

    Article  Google Scholar 

  55. Wu F, Liu T, Liu J, Tang X (2009) Excavation unloading destruction phenomena in rock dam foundations. Bull Eng Geol Environ 68(2):257–262. https://doi.org/10.1007/s10064-009-0202-5

    Article  Google Scholar 

  56. Xeidakis GS, Samaras IS, Zacharopoulos DA, Papakaliatakis GE (1997) Trajectories of unstably growing cracks in mixed mode I–II loading of marble beams. Rock Mech Rock Eng 30(1):19–33. https://doi.org/10.1007/BF01020111

    Article  Google Scholar 

  57. Xia K (2013) A Mohr–Coulomb failure criterion for rocks subjected to dynamic loading. In: Yang Q, Zhang J-M, Zheng H, Yao Y (eds) Constitutive modeling of geomaterials. Springer, Berlin, pp 367–370

    Google Scholar 

  58. Xu S, Huang J, Wang P, Zhang C, Zhou L, Hu S (2015) Investigation of rock material under combined compression and shear dynamic loading: an experimental technique. Int J Impact Eng 86(7):206–222. https://doi.org/10.1016/j.ijimpeng.2015.07.014

    Article  Google Scholar 

  59. Yang SQ (2016) Experimental study on deformation, peak strength and crack damage behavior of hollow sandstone under conventional triaxial compression. Eng Geol 213:11–24. https://doi.org/10.1016/j.enggeo.2016.08.012

    Article  Google Scholar 

  60. Zhang QB, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47(4):1411–1478. https://doi.org/10.1007/s00603-013-0463-y

    Article  Google Scholar 

  61. Zhao J (2000) Applicability of Mohr–Coulomb and Hoek–Brown strength criteria to the dynamic strength of brittle rock. Int J Rock Mech Min Sci 37(7):1115–1121. https://doi.org/10.1016/S1365-1609(00)00049-6

    Article  Google Scholar 

  62. Zeng B, Huang D, Ye SQ, Chen FY, Zhu TT, Tu YL (2019) Triaxial extension tests on sandstone using a simple auxiliary apparatus. Int J Rock Mech Min Sci 120(2019):29–40. https://doi.org/10.1016/j.ijrmms.2019.06.006

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 41807279, 41672300 and 41972297), the Natural Science Foundation of Hebei Province, China (No. E2019202336) and the Supporting program of hundred promising innovative talents in Hebei provincial education office (No. SLRC2019027).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Duofeng Cen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Cen, D. & Song, Y. Comparative Investigation on the Compression–Shear and Tension–Shear Behaviour of Sandstone at Different Shearing Rates. Rock Mech Rock Eng 53, 3111–3131 (2020). https://doi.org/10.1007/s00603-020-02094-3

Download citation

Keywords

  • Compression–shear
  • Tension–shear
  • Hoek–Brown strength criterion
  • Shearing rate