A New Method for Prediction of Rock Quality Designation in Borehole Using Energy of Rotary Drilling

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8



Rock quality designation

RQDd :

Developed rock quality designation from drilling

e :

Specific energy

A :

Excavation area

F :

Thrust force-on-bit

v :

Penetration rate

M :


w :

Rotation speed

h :

Penetration per rotation for rotary drilling, h = 60v/w

f :

Value of the specific energy after using data normalization method

e min :

Minimum value of the specific energy in total length range

e max :

Maximum value of the specific energy in total length range

s :

Standard deviation of f

H :

Curve-fitting parameter for the RQDd–s curve


  1. Araghi MS, Samani FB, Goudarzi MT (2006) A proposal for the modification of RQD (MRQD). In: Proceeding of 4th Asian rock mechanics symposium, rock mechanics in underground construction. ISRM International Symposium

  2. Azimian A (2016) A new method for improving the RQD determination of rock core in borehole. Rock Mech Rock Eng 49(4):1559–1566

    Article  Google Scholar 

  3. Bieniawski ZT (1989) Engineering rock mass classification: a complete manual for engineers and geologists in mining, civil, and petroleum engineering. Wiley, New York, p 251

    Google Scholar 

  4. Chen JP, Fan JH, Liu D (2005) Review and prospect on the application and research of RQD. Rock Soil Mech 26(S.2):249–252 (in Chinese)

    Google Scholar 

  5. Choi SY, Park HD (2004) Variation of rock quality designation (RQD) with scanline orientation and length: a case study in Korea. Int J Rock Mech Min Sci 41(2):207–221

    Article  Google Scholar 

  6. Deere DU (1963) Technical description of rock cores for engineering purposes. Rock Mech Eng Geol 1(1):18

    Google Scholar 

  7. Deere DU (1989) Rock quality designation (RQD) after 20 years. In: US army corps of engineers contract report GL-89-1. Waterways Experiment Station, Vicksburg, MS 67

  8. Deere DU, Deere DW (1988) The RQD index in practice. In: Proceedings of symposium on rock class, Engineering Purposes. ASTM Special Technical Publications vol 984, pp 91–101

  9. Deere DU, Hendron AJ, Patton FD, Cording EJ (1967) Design of surface and near surface constructions in rock. In Fairhurst C (eds) In: Proceedings of 8th US symposium on rock mechanics. New York: AIME, Hack, R. 20, pp 237–302

  10. Dyke CG (1989) Core discing: its potential as an indicator of principal in situ stress directions. IMHEF-LMH 17(6):681–684

    Google Scholar 

  11. Falls SD, Young RP (1998) Acoustic emission and ultrasonic-velocity methods used to characterise the excavation disturbance associated with deep tunnels in hard rock. Tectonophysics 289(1–3):1–15

    Article  Google Scholar 

  12. Guo HS, Feng XT, Li SJ, Yang CX, Yao ZB (2017) Evaluation of the integrity of deep rock masses using results of digital borehole televiewers. Rock Mech Rock Eng 50(6):1371–1382

    Article  Google Scholar 

  13. Hack R (2002) Keynote lecture: an evaluation of slope stability classification. In: Dinis da Gama C, Ribeira e Sousa L (eds) Proceedings of ISRM EUROCK’2002, Portugal, Madeira, Funchal, 25–28 November 2002: 3–32. Lisboa: Sociedade Portuguesa de Geotecnia

  14. Haftani M, Chehreh HA, Mehinrad A, Binazadeh K (2016) Practical investigations on use of weighted joint density to decrease the limitations of RQD measurements. Rock Mech Rock Eng 49(4):1551–1558

    Article  Google Scholar 

  15. Harrison JP (1999) Selection of the threshold value in RQD assessments. Int J Rock Mech Min Sci 36(5):673–685

    Article  Google Scholar 

  16. Hoek E, Bray JW (1981) Rock slope engineering, 3rd edn. The Institution of Mining and Metallurgy, London

    Google Scholar 

  17. Hoek E, Brown ET (1980) Underground excavations in rock. Institution of Mining and Metallurgy, London

    Google Scholar 

  18. Ishida T, Saito T (1995) Observation of core discing and in situ stress measurements; stress criteria causing core discing. Rock Mech Rock Eng 28(3):167–182

    Article  Google Scholar 

  19. Kaga N, Matsuki K, Sakaguchi K (2003) The in situ stress states associated with core discing estimated by analysis of principal tensile stress. Int J Rock Mech Min Sci 40(5):653–665

    Article  Google Scholar 

  20. Li L, Ouellet S, Aubertin M (2009) An improved definition of rock quality designation, RQDc. In: Proceedings of the 3rd CANUS rock mechanics symposium, Toronto, May

  21. Li SJ, Feng XT, Wang CY (2013) ISRM suggested method for rock mass fractures observations using a borehole digital optical televiewer. Rock Mech Rock Eng 46(3):635–644

    Article  Google Scholar 

  22. Palmstrom A (1982) The volumetric joint count—a useful and simple measure of the degree of jointing. In: Proceedings of international congress of IAEG, New Delhi, 1982, pp V. 221–V. 228

  23. Palmstrom A (2005) Measurements of and correlations between block size and rock quality designation (RQD). Tunn Undergr Space Technol 20:362–377

    Article  Google Scholar 

  24. Priest SD, Hudson JA (1976) Discontinuity spacings in rock. Int J Mech Min Sci Geomech Abstr 13:135–148

    Article  Google Scholar 

  25. Sayers CM (1988) Inversion of ultrasonic wave velocity measurements to obtain the microcrack orientation distribution function in rocks. Ultrasonics 26(35):743–749

    Google Scholar 

  26. Schunnesson H (1996) RQD predictions based on drill performance parameters. Tunn Undergr Space Technol 11(3):345–351

    Article  Google Scholar 

  27. Sugawara J, Yue ZQ, Tham LG, Law KT, Lee CF (2003) Weathered rock characterization using drilling parameters. Can Geotech J 40(3):661–668

    Article  Google Scholar 

  28. Takahashi T, Takeuchi T, Sassa K (2004) ISRM suggested methods for borehole geophysics in rock engineering. Int J Rock Mech Min Sci 41(6):885–914

    Article  Google Scholar 

  29. Teale R (1965) The concept of specific energy in rock drilling. Int J Rock Mech Min Sci 2:57–73

    Article  Google Scholar 

  30. Zhang K, Hou RB, Zhang GH, Zhang GM, Zhang HQ (2016) Rock drillability assessment and lithology classification based on the operating parameters of a drifter: case study in a coal mine in china. Rock Mech Rock Eng 41(1):329–334

    Article  Google Scholar 

Download references


This study is sponsored by the National Natural Science Foundation of China (Grants no. 11902249 and 51779207) and the Project of Scientific Research of Shanxi Province (Grant no. 2019JQ395). The financial support provided by this sponsor is greatly appreciated. The authors would like to thank Prof. G. Barla, reviewers and editors for their suggestions.

Author information



Corresponding author

Correspondence to M. M. He.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, M.M., Li, N., Yao, X.C. et al. A New Method for Prediction of Rock Quality Designation in Borehole Using Energy of Rotary Drilling. Rock Mech Rock Eng 53, 3383–3394 (2020). https://doi.org/10.1007/s00603-020-02091-6

Download citation


  • Rock quality designation prediction
  • Rotary drilling energy
  • Rock mass classification
  • Standard deviation