Stability Analysis of the Arch Crown of a Large-Scale Underground Powerhouse During Excavation

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Alejano LR, Gómez-Márquez I, Martínez-Alegría R (2010) Analysis of a complex toppling-circular slope failure. Eng Geol 114(1):93–104. https://doi.org/10.1016/j.enggeo.2010.03.005

    Article  Google Scholar 

  2. Boatwright J, Fletcher JB (1984) The partition of radiated energy between P and S waves. Bull Seismol Soc Am 74:361–376

    Google Scholar 

  3. Boore DM, Boatwright J (1984) Average body-wave radiation coefficients. Bull Seismol Soc Am 74(5):1615–1621

    Google Scholar 

  4. Bossart P, Trick T, Meier PM, Mayor JC (2004) Structural and hydrogeological characterisation of the excavation-disturbed zone in the Opalinus Clay (Mont Terri Project, Switzerland). Appl Clay Sci 26:429–448. https://doi.org/10.1016/j.clay.2003.12.018

    Article  Google Scholar 

  5. Cai M, Kaiser PK, Martin CD (1999) A tensile model for the interpretation of microseismic events near underground openings. In: Talebi S (ed) Seismicity caused by mines, fluid injections, reservoirs, and oil extraction. Birkhäuser, Basel, pp 67–92

    Google Scholar 

  6. Cai M, Kaiser PK, Martin CD (2001) Quantification of rock mass damage in underground excavations from microseismic event monitoring. Int J Rock Mech Min Sci 38(8):1135–1145. https://doi.org/10.1016/S1365-1609(01)00068-5

    Article  Google Scholar 

  7. Cai M, Morioka H, Kaiser PK, Tasaka Y, Kurose H, Minami M, Maejima T (2007) Back-analysis of rock mass strength parameters using AE monitoring data. Int J Rock Mech Min Sci 44:538–549. https://doi.org/10.1016/j.ijrmms.2006.09.012

    Article  Google Scholar 

  8. Cundall PA (1988) Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. Int J Rock Mech Min Sci Geomech Abstr 25:107–116. https://doi.org/10.1016/0148-9062(88)92293-0

    Article  Google Scholar 

  9. Dai F, Li B, Xu NW, Fan YL, Zhang CQ (2016) Deformation forecasting and stability analysis of large-scale underground powerhouse caverns from microseismic monitoring. Int J Rock Mech Min 86:269–281. https://doi.org/10.1016/j.ijrmms.2016.05.001

    Article  Google Scholar 

  10. Dai F, Li B, Xu NW, Zhu YG (2017) Microseismic early warning of surrounding rock mass deformation in the underground powerhouse of the Houziyan hydropower station, China. Tunn Undergr Sp Technol 62:64–74. https://doi.org/10.1016/j.tust.2016.11.009

    Article  Google Scholar 

  11. Deluzarche R, Cambou B (2006) Discrete numerical modelling of rockfill dams. Int J Numer Anal Methods Geomech 30:1075–1096

    Article  Google Scholar 

  12. Dong LJ, Li XB, Tang L, Gong FQ (2011) Mathematical functions and parameters for microseismic source location without pre-measuring speed. Chin J Rock Mech Eng 30:2057–2067 (in Chinese)

    Google Scholar 

  13. Dong LJ, Li XB, Xie GN (2014) Nonlinear methodologies for identifying seismic event and nuclear explosion using random forest, support vector machine, and naive bayes classification. Abstr Appl Anal 2014:459137

    Google Scholar 

  14. Dong LJ, Wesseloo J, Potvin Y, Li XB (2015) Discrimination of mine seismic events and blasts using the fisher classifier, naive bayesian classifier and logistic regression. Rock Mech Rock Eng 49:183–211. https://doi.org/10.1007/s00603-015-0733-y

    Article  Google Scholar 

  15. Dong LJ, Wesseloo J, Potvin Y, Li XB (2016) Discriminant models of blasts and seismic events in mine seismology. Int J Rock Mech Min Sci 86:282–291. https://doi.org/10.1016/j.ijrmms.2016.04.021

    Article  Google Scholar 

  16. Dong LJ, Sun DY, Li XB, Ma J, Zhang LY, Tong XJ (2018a) Interval nonprobabilistic reliability of surrounding jointed rockmass considering microseismic loads in mining tunnels. Tunn Undergr Sp Technol 81:326–335. https://doi.org/10.1016/j.tust.2018.06.034

    Article  Google Scholar 

  17. Dong LJ, Zou W, Li XB, Shu WW, Wang ZW (2018b) Collaborative localization method using analytical and iterative solutions for microseismic/acoustic emission sources in the rockmass structure for underground mining. Eng Fract Mech 210:95–112. https://doi.org/10.1016/j.engfracmech.2018.01.032

    Article  Google Scholar 

  18. ESG (2012) ESG hyperion software suite version 13.0 user’s guide, vol I. Engineering Seismology Group, Canada, pp 578–579

  19. Gu DM, Huang D (2016) A complex rock topple-rock slide failure of an anaclinal rock slope in the Wu Gorge, Yangtze River, China. Eng Geol 208:165–180

    Article  Google Scholar 

  20. Hudyma M, Potvin YH (2010) An engineering approach to seismic risk management in hardrock mines. Rock Mech Rock Eng 43:891–906. https://doi.org/10.1007/s00603-009-0070-0

    Article  Google Scholar 

  21. Hudson JA, Feng XT (2007) Updated flowcharts for rock mechanics modelling and rock engineering design. Int J Rock Mech Min 44:174–195. https://doi.org/10.1016/j.ijrmms.2006.06.001

    Article  Google Scholar 

  22. Hydro China Huadong Engineering Corporation (2013) Geological data of bidding documents reference of civil engineering and installation of metal structures of the left bank water diversionand power generation system in Baihetan Hydropower Station, Hangzhou (In Chinese)

  23. ISRM (International Society for Rock Mechanics) (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr 15:319–368

    Article  Google Scholar 

  24. Itasca Consulting Group (2008) 3-Dimensions particle flow code user's guide, version 4.0, Minneapolis, Minnesota

  25. Itasca Consulting Group (2011) Universal distinct element code user's guide, version 5.0, Minneapolis, Minnesota

  26. Itasca Consulting Group (2013) 3 Dimensional distinct element code user's guide, version 5.0, Minneapolis, Minnesota

  27. Kaiser PK, Yazici S, Maloney S (2001) Mining-induced stress change and consequences of stress path on excavation stability-a case study. Int J Rock Mech Min 38:167–180. https://doi.org/10.1016/S1365-1609(00)00038-1

    Article  Google Scholar 

  28. Li HB, Yang XG, Zhang XB, Zhou JW (2017) Deformation and failure analyses of large underground caverns during construction of the Houziyan Hydropower Station, Southwest China. Eng Fail Anal 80:164–185. https://doi.org/10.1016/j.engfailanal.2017.06.037

    Article  Google Scholar 

  29. Li A, Xu NW, Dai F, Gu GK, Hu ZH, Liu Y (2018) Stability analysis and failure mechanism of the steeply inclined bedded rock masses surrounding a large underground opening. Tunn Undergr Sp Technol 77:45–58. https://doi.org/10.1016/j.tust.2018.03.023

    Article  Google Scholar 

  30. Li A, Dai F, Xu NW, Gu GK, Hu ZH (2019) Analysis of a complex flexural toppling failure of large underground caverns in layered rock masses. Rock Mech Rock Eng 52(9):3157–3181. https://doi.org/10.1007/s00603-019-01760-5

    Article  Google Scholar 

  31. Li A, Liu Y, Dai F, Liu K, Wei MD (2020) Continuum analysis of the structurally controlled displacements for large-scale underground caverns in bedded rock masses. Tunn Undergr Space Technol 97:103288. https://doi.org/10.1016/j.tust.2020.103288

    Article  Google Scholar 

  32. Liu J, Liu FH, Kong XJ (2010) PFC numerical simulation of particle breakage of rock-fill dam. In: 12th biennial international conference on engineering, construction, and operations in challenging environments. ASCE, pp 2933–2940

  33. Nitka M, Tejchman J, Kozicki J, Lesniewska D (2015) Dem analysis of micro-structural events within granular shear zones under passive earth pressure conditions. Granul Matter 17(3):325–343. https://doi.org/10.1007/s10035-015-0558-0

    Article  Google Scholar 

  34. Shang J, Hencher SR, West LJ (2016) Tensile strength of geological discontinuities including incipient bedding, rock joints and mineral veins. Rock Mech Rock Eng 49(11):4213–4225. https://doi.org/10.1007/s00603-016-1041-x

    Article  Google Scholar 

  35. Shang J, Duan K, Gui Y, Handley K, Zhao Z (2018a) Numerical investigation of the direct tensile behaviour of laminated and transversely isotropic rocks containing incipient bedding planes with different strengths. Comput Geotech 104:373–388. https://doi.org/10.1016/j.compgeo.2017.11.007

    Article  Google Scholar 

  36. Shang J, Zhao Z, Ma S (2018b) On the shear failure of incipient rock discontinuities under cnl and cns boundary conditions: insights from dem modelling. Eng Geol 234:153–166. https://doi.org/10.1016/j.enggeo.2018.01.012

    Article  Google Scholar 

  37. Tonon F, Amadei B (2002) Effect of elastic anisotropy on tunnel wall displacements behind a tunnel face. Rock Mech Rock Eng 35:141–160. https://doi.org/10.1007/s00603-001-0019-4

    Article  Google Scholar 

  38. Xu NW, Dai F, Li B, Zhu YG, Zhao T, Yang DS (2017) Comprehensive evaluation of excavation-damaged zones in the deep underground caverns of the Houziyan hydropower station, Southwest China. Bull Eng Geol Environ 76:275–293. https://doi.org/10.1007/s10064-016-0858-6

    Article  Google Scholar 

  39. Yan H, He F, Yang T, Li L, Zhang S, Zhang J (2016) The mechanism of bedding separation in roof strata overlying a roadway within a thick coal seam: a case study from the Pingshuo Coalfield, China. Eng Fail Anal 62:75–92. https://doi.org/10.1016/j.engfailanal.2015.12.006

    Article  Google Scholar 

  40. Zhou YY, Feng XT, Xu DP, Fan QX (2016) Experimental investigation of the mechanical behavior of bedded rocks and its implication for high sidewall caverns. Rock Mech Rock Eng 49:3643–3669. https://doi.org/10.1007/s00603-016-1018-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the National Natural Science Foundation of China (Grant Nos. 51879184 and 51679158).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nuwen Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, Z., Xu, N., Li, B. et al. Stability Analysis of the Arch Crown of a Large-Scale Underground Powerhouse During Excavation. Rock Mech Rock Eng 53, 2935–2943 (2020). https://doi.org/10.1007/s00603-020-02077-4

Download citation