Accounting for Small-Scale Heterogeneity and Variability of Clay Rock in Homogenised Numerical Micromechanical Response and Microcracking

Abstract

Clayey rocks have a complex microstructure with multiple characteristic lengths. Deformation under mechanical loading generally induces damage by microcracking, which essentially concerns the scale of mineral inclusions embedded in the clay matrix. The modelling of these materials is considered within the framework of a double scale approach, by numerical homogenisation, of the squared finite element method type. This allows a heterogeneous microstructure of the material to be taken into account and a distribution of morphological properties to be introduced. Emphasis is placed on the generation of microstructures satisfying experimental observations, and keeping a certain simplicity to fit into the framework of double scale modelling. The material characteristics and behaviour are defined at the grain scale: the mineralogical properties include the mineral phase proportions and the grain morphology, while the material constituents are represented by elastic grains separated by damageable cohesive crack models. Then, the overall microscale behaviour of the material under solicitation is derived from equilibrated elementary area (EA) configuration and computational homogenisation. The variability of the material response is studied with regard to small-scale aspects as microstructure variability, microstructure size, grain angularity, and properties of grain contacts. Deformation analyses at grain contacts emphasise a dominant shear deformation mode and the development of decohesion between grains. The latter induces microfaulting processes across the entire EA and strain softening of the overall response. Moreover, the improvement of microscale behaviour modelling opens new possibilities for more realistic multi-scale modelling and upscaled behaviour of heterogeneous rocks.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. Ahrens TJ (1995) Mineral physics and crystallography: a handbook of physical constants. p 354

  2. Andra (2005) Dossier 2005 Argile. Synthesis: Evaluation of the feasibility of a geological repository in an argillaceous formation, Meuse/Haute Marne site. Tech. rep., Paris

  3. Armand G, Leveau F, Nussbaum C, de La Vaissiere R, Noiret A, Jaeggi D, Landrein P, Righini C (2014) Geometry and properties of the excavation-induced fractures at the Meuse/Haute–Marne URL drifts. Rock Mech Rock Eng 47(1):21–41

    Google Scholar 

  4. Armand G, Conil N, Talandier J, Seyedi DM (2017) Fundamental aspects of the hydromechanical behaviour of Callovo–Oxfordian claystone: from experimental studies to model calibration and validation. Comput Geotech 85:277–286

    Google Scholar 

  5. Bésuelle P, Chambon R, Collin F (2007) Switching mode of deformation in post-localization solutions with a quasi brittle material. J Mech Mater Struct 1(7):1115–1134

    Google Scholar 

  6. Bésuelle P, Andò E, Stamati O, Boller E (2019) Mesure de champs de déformation dans l’argillite du Callovo-Oxfordien à l’échelle du micron. In: \(3^{eme}\) journées thématiques des Techniques d’imagerie pour la caractérisation des matériaux et des structures du génie civil, pp 1–2

  7. Bilbie G, Dascalu C, Chambon R, Caillerie D (2008) Micro-fracture instabilities in granular solids. Acta Geotech 3(1):25–35

    Google Scholar 

  8. Cooper DW (1988) Random-sequential-packing simulations in three dimensions for spheres. Phys Rev A 38:522–524

    Google Scholar 

  9. Cosenza P, Prêt D, Giraud A, Hedan S (2015a) Effect of the local clay distribution on the effective elastic properties of shales. Mech Mater 84:55–74

    Google Scholar 

  10. Cosenza P, Prêt D, Zamora M (2015b) Effect of the local clay distribution on the effective electrical conductivity of clay rocks. J Geophys Res Solid Earth 120:145–168

    Google Scholar 

  11. Cosenza P, Fauchille AL, Prêt D, Hedan S, Giraud A (2019) Statistical representative elementary area of shale inferred by micromechanics. Int J Eng Sci 142:53–73

    Google Scholar 

  12. Croisé J, Schlickenrieder L, Marschall P, Boisson JY, Vogel P, Yamamoto S (2004) Hydrogeological investigations in a low permeability claystone formation: the Mont Terri Rock Laboratory. Phys Chem Earth 29(1):3–15

    Google Scholar 

  13. Desbois G, Höhne N, Urai JL, Bésuelle P, Viggiani G (2017) Deformation in cemented mudrock (Callovo-Oxfordian Clay) by microcracking, granular flow and phyllosilicate plasticity: insights from triaxial deformation, broad ion beam polishing and scanning electron microscopy. Solid Earth 8(2):291–305

    Google Scholar 

  14. Desrues J, Argilaga A, Caillerie D, Combe G, Nguyen K, Richefeu V, Dal Pont S (2019) From discrete to continuum modelling of boundary value problems in geomechanics: an integrated FEM-DEM approach. Int J Numer Anal Meth Geomech 43(5):919–955

    Google Scholar 

  15. Fauchille AL (2015) Déterminismes microstructuraux et minéralogiques de la fissuration hydrique dans les argilites de Tournemire : apports couplés de la pétrographie quantitative et de la corrélation d’images numériques. PhD thesis, Université de Poitiers, Poitiers

  16. Fauchille AL, van den Eijnden AP, Ma L, Chandler M, Taylor KG, Madi K, Lee PD, Rutter E (2018) Variability in spatial distribution of mineral phases in the Lower Bowland Shale, UK, from the mm- to \(\mu\)m-scale: quantitative characterization and modelling. Mar Petrol Geol 92:109–127

    Google Scholar 

  17. Feyel F, Chaboche JL (2000) \({\text{ FE }}^2\) multiscale approach for modelling the elastoviscoplastic behaviour of long fibre SiC/Ti composite materials. Comput Methods Appl Mech Eng 183(3–4):309–330

    Google Scholar 

  18. French ME, Chester FM, Chester JS (2015) Micromechanisms of creep in clay-rich gouge from the central deforming zone of the san andreas fault. J Geophys Res Solid Earth 120(2):827–849

    Google Scholar 

  19. Frey J, Chambon R, Dascalu C (2013) A two-scale poromechanical model for cohesive rocks. Acta Geotech 8(2):107–124

    Google Scholar 

  20. Fritzen F, Böhlke T, Schnack E (2009) Periodic three-dimensional mesh generation for crystalline aggregates based on voronoi tessellations. Comput Mech 43(5):701–713

    Google Scholar 

  21. Galvanetto U, Aliabadi MHF (2009) Multiscale modeling in solid mechanics: computational approaches. Imperial College Press, London, p 334

    Google Scholar 

  22. Gaucher E, Robelin C, Matray JM, Négrel G, Gros Y, Heitz JF, Vinsot A, Rebours H, Cassagnabère A, Bouchet A (2004) ANDRA underground research laboratory: Interpretation of the mineralogical and geochemical data acquired in the Callovian–Oxfordian formation by investigative drilling. Phys Chem Earth 29:55–77

    Google Scholar 

  23. Geers MGD, Yvonnet J (2016) Multiscale modeling of microstructure-property relations. MRS Bull 41(8):610–616

    Google Scholar 

  24. Ghosh S (2011) Micromechanical analysis and multi-scale modeling: using the Voronoi cell finite element method, p 730

  25. Ghossein E, Lévesque M (2013) Random generation of periodic hard ellipsoids based on molecular dynamics: a computationally-efficient algorithm. J Comput Phys 253:471–490

    Google Scholar 

  26. Haines SH, Kaproth B, Marone C, Saffer D, van der Pluijm B (2013) Shear zones in clay-rich fault gouge: a laboratory study of fabric development and evolution. J Struct Geol 51:206–225

    Google Scholar 

  27. Hill R (1965) A self-consistent mechanics of composite materials. J Mech Phys Solids 13(4):213–222

    Google Scholar 

  28. Jorand R (2006) Etude expérimentale de la conductivité thermique: application au forage est205 du site de meuse/haute marne (andra). PhD thesis, University of Denis Diderot, Paris

  29. Kickmaier W, McKinley I (1997) A review of research carried out in European rock laboratories. Nucl Eng Des 176(1–2):75–81

    Google Scholar 

  30. Klinkenberg M, Kaufhold S, Dohrmann R, Siegesmund S (2009) Influence of carbonate microfabrics on the failure strength of claystones. Eng Geol 107(1):42–54

    Google Scholar 

  31. Kouznetsova V, Brekelmans WAM, Baaijens FPT (2001) An approach to micro-macro modeling of heterogeneous materials. Comput Mech 27(1):37–48

    Google Scholar 

  32. Lubachevsky BD, Stillinger FH (1990) Geometric properties of random disk packings. J Stat Phys 60(5):561–583

    Google Scholar 

  33. Mandel J (1972) Plasticité classique et viscoplasticité, vol CISM Lecture Notes. Springer, New York, p 187

  34. Marinelli F, van den Eijnden AP, Sieffert Y, Chambon R, Collin F (2016) Modeling of granular solids with computational homogenization: comparison with Biot’s theory. Finite Elem Anal Des 119:45–62

    Google Scholar 

  35. Massart TJ, Selvadurai APS (2012) Stress-induced permeability evolution in a quasi-brittle geomaterial. J Geophys Res Solid Earth 117(B7)

  36. M’Jahad S, Davy CA, Skoczylas F, Talandier J (2017) Characterization of transport and water retention properties of damaged Callovo-Oxfordian claystone. In: Radioactive waste confinement: clays in natural and engineered barriers, Geological Society of London

  37. Morgenstern NR, Tchalenko JS (1967) Microscopic structures in kaolin subjected to direct shear. Géotechnique 17(4):309–328

    Google Scholar 

  38. Nguyen TT, Yvonnet J, Bornert M, Chateau C, Bilteryst F, Steib E (2017) Large-scale simulations of quasi-brittle microcracking in realistic highly heterogeneous microstructures obtained from micro ct imaging. Extract Mech Lett 17:50–55

    Google Scholar 

  39. Ortega JA, Ulm FJ, Abousleiman Y (2007) The effect of the nanogranular nature of shale on their poroelastic behavior. Acta Geotech 2(3):155–182

    Google Scholar 

  40. Pardoen B, Collin F (2017) Modelling the influence of strain localisation and viscosity on the behaviour of underground drifts drilled in claystone. Comput Geotech 85:351–367

    Google Scholar 

  41. Pardoen B, Dal Pont S, Desrues J, Bésuelle P, Prêt D, Cosenza P (2018) Heterogeneity and variability of clay rock microstructure in a hydro-mechanical double scale FEM x FEM analysis. In: Giovine P, Mariano P, Mortara G (eds) Micro to MACRO mathematical modelling in soil mechanics. Trends in mathematics. Springer, Cham, pp 247–256

    Google Scholar 

  42. Robinet JC (2008) Minéralogie, porosité et diffusion des solutés dans l’argilite du Callovo-Oxfordien de Bure (Meuse/Haute-Marne, France) de l’échelle centimétrique á micrométrique. PhD thesis, Université de Poitiers, Poitiers

  43. Robinet JC, Sardini P, Coelho D, Parneix JC, Prêt D, Sammartino S, Boller E, Altmann S (2012) Effects of mineral distribution at mesoscopic scale on solute diffusion in a clay-rich rock: Example of the Callovo–Oxfordian mudstone (Bure, France). Water Resour Res 48(5)

  44. Rutter EH, Maddock RH, Hall SH, White SH (1986) Comparative microstructures of natural and experimentally produced clay-bearing fault gouges. Pure Appl Geophys 124(1):3–30

    Google Scholar 

  45. Sammartino S, Bouchet A, Prêt D, Parneix JC, Tevissen E (2003) Spatial distribution of porosity and minerals in clay rocks from the Callovo–Oxfordian formation (Meuse/Haute-Marne, Eastern France)-implications on ionic species diffusion and rock sorption capability. Appl Clay Sci 23(1–4):157–166

    Google Scholar 

  46. Schröder J (2014) Plasticity and Beyond, vol 550, Springer, chap A numerical two-scale homogenization scheme: the \({\text{ FE }}^2\)-method, pp 1–64

  47. Shen WQ, Shao JF (2014) A micro–macro model for porous geomaterials with inclusion debonding. Int J Dam Mech 24(7):1026–1046

    Google Scholar 

  48. Shen WQ, Shao JF (2015) A micromechanical model of inherently anisotropic rocks. Comput Geotech 65:73–79

    Google Scholar 

  49. Shen WQ, Shao JF, Kondo D, Gatmiri B (2012) A micro–macro model for clayey rocks with a plastic compressible porous matrix. Int J Plast 36:64–85

    Google Scholar 

  50. Smit RJM, Brekelmans WAM, Meijer HEH (1998) Prediction of the mechanical behavior of nonlinear heterogeneous systems by multi-level finite element modeling. Comput Methods Appl Mech Eng 155(1):181–192

    Google Scholar 

  51. Sonon B, François B, Massart TJ (2015) An advanced approach for the generation of complex cellular material representative volume elements using distance fields and level sets. Comput Mech 56(2):221–242

    Google Scholar 

  52. Stamati O, Roubin E, Andò E, Malecot Y (2019) Tensile failure of micro-concrete: from mechanical tests to fe meso-model with the help of X-ray tomography. Meccanica 54(4–5):707–722

    Google Scholar 

  53. van den Eijnden AP, Bésuelle P, Chambon R, Collin F (2016) A \({\text{ FE }}^2\) modelling approach to hydromechanical coupling in cracking-induced localization problems. Int J Solids Struct 97–98:475–488

    Google Scholar 

  54. van den Eijnden AP, Bésuelle P, Collin F, Chambon R, Desrues J (2017) Modeling the strain localization around an underground gallery with a hydro-mechanical double scale model; effect of anisotropy. Comput Geotech 85:384–400

    Google Scholar 

  55. Wang L, Bornert M, Héripré E, Chanchole S, Pouya A, Halphen B (2015) Microscale insight into the influence of humidity on the mechanical behavior of mudstones. J Geophys Res Solid Earth 120(5):3173–3186

    Google Scholar 

  56. Widom B (1966) Random sequential addition of hard spheres to a volume. J Chem Phys 44(10):3888–3894

    Google Scholar 

  57. Yamaji A, Masuda F (2005) Improvements in graphical representation of fabric data, showing the influence of aspect ratios of grains on their orientations. J Sediment Res 75(3):514–519

    Google Scholar 

  58. Yven B, Sammartino S, Geraud Y, Homand F, Villieras F (2007) Mineralogy, texture and porosity of Callovo–Oxfordian argillites of the Meuse/Haute-Marne region (eastern Paris Basin). Mém Soc géol France 178:73–90

    Google Scholar 

  59. Zaoui A (2002) Continuum micromechanics: survey. J Eng Mech 128(8):808–816

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the French programme NEEDS for its financial support to the project. The laboratoire 3SR is part of the LabEx Tec 21 (Investissements d’Avenir—grant agreement nANR-11-LABX-0030).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Benoît Pardoen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pardoen, B., Bésuelle, P., Dal Pont, S. et al. Accounting for Small-Scale Heterogeneity and Variability of Clay Rock in Homogenised Numerical Micromechanical Response and Microcracking. Rock Mech Rock Eng 53, 2727–2746 (2020). https://doi.org/10.1007/s00603-020-02066-7

Download citation

Keywords

  • Micromechanics
  • Numerical modelling
  • Clay rock
  • Microcracking
  • Homogenised response