Advertisement

Rock Mechanics and Rock Engineering

, Volume 51, Issue 9, pp 2881–2894 | Cite as

Heave of a Building Induced by Swelling of an Anhydritic Triassic Claystone

  • Anna Ramon
  • Eduardo E. Alonso
Original Paper
  • 172 Downloads

Abstract

This paper describes the conditions leading to a sustained, low-rate, heave phenomenon affecting a building founded on hard Keuper anhydritic rock. The building was located in an abandoned gypsum quarry. Monitoring data as well as vertical profiles of gypsum and anhydrite content indicate that swelling was associated with the presence of a shallow level of anhydritic clay rock. This paper concludes that the initial quarry excavation as well as the additional building foundation work modified the original stress state and contributed to opening fractures at depth. It also resulted in a facilitated access of water to the upper rock levels, immediately under the foundation footings. Measured heave rates are substantially lower than other rates recorded in a few recent cases. An explanation is provided for the difference. This paper describes a comforting solution for the building.

Keywords

Swelling Anhydrite Keuper Monitoring Chemistry Repair works 

Notes

Acknowledgements

The authors thank Dr. E. Tauler from the Crystallographic Department of the Universitat de Barcelona for her contribution to the identification of minerals. The collaboration with the architects R. Brufau and C. Gil and the Àrea Metropolitana de Barcelona is also acknowledged. The company Soldata installed the field instrumentation and provided the monitoring data included in this paper.

References

  1. Alonso EE, Casanovas JC (1991) Micropile foundation of a singular building over existing underground structures. In: Proc. Fondations profondes. Presse de l’École Nationale des Ponts et Chaussées, Paris, pp 93–102Google Scholar
  2. Alonso EE, Ramon A (2013a) Heave of a railway bridge induced by gypsum crystal growth: field observations. Géotechnique 63(9):707–719  https://doi.org/10.1680/geot.12.P.034 CrossRefGoogle Scholar
  3. Alonso EE, Ramon A (2013b) Massive sulfate attack to cement-treated railway embankments. Géotechnique.  https://doi.org/10.1680/geot.SIP13.P.023 Google Scholar
  4. Alonso E, Ramon A (2015) Clay hydration and crystal growth in expansive anhydritic claystone. In: The Ascó Power Plant case. Geophysical Research Abstracts 17, EGU2015-4026, EGU General Assembly. ViennaGoogle Scholar
  5. Alonso EE, Berdugo IR, Ramon A (2013) Extreme expansive phenomena in anhydritic-gypsiferous claystone: the case of Lilla tunnel. Géotechnique 63(7):584–612.  https://doi.org/10.1680/geot.12.P.143 CrossRefGoogle Scholar
  6. Amstad C, Kovári K (2001) Untertagbau in quellfähigem fels. Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation (UVEK). Bundesamt für Strassen (ASTRA), ZürichGoogle Scholar
  7. Anagnostou G (2007) Design uncertainties in tunnelling through anhydritic swelling rocks. Felsbau 27(4):48–54Google Scholar
  8. Hawkins AB, Pinches GM (1987a) Cause and significance of heave at Llandough Hospital, Cardiff—a case history of ground floor heave due to gypsum growth. Q J Eng Geol Hydrogeol 20(1):41–57CrossRefGoogle Scholar
  9. Hawkins AB, Pinches GM (1987b). Sulphate analysis on black mudstones. Géotechnique 37(2):191–196CrossRefGoogle Scholar
  10. Hull AB, Cody RD, Green SA (1980) Minimization of building heave by chemically inhibiting gypsum-induced shale expansion; a preliminary report. In: 21st U.S. Symposium on Rock Mechanics (USRMS), 27–30 May, Rolla, MissouriGoogle Scholar
  11. Kleinert K, Einsele G (1978) Sohlhebungen in Straßeneinschnitten in anhydritführendem Gipskeuper. - Ber. 3. nat. Tag Felsmech, 9 Abb.; Aachen (DGEG), pp 103–124Google Scholar
  12. Kovári K, Descoeudres F (2001) Tunnelling Switzerland. Swiss Tunnelling Society, Swiss. ISBN:3-9803390-6-8Google Scholar
  13. Parkhurst DL (1995) User’s guide to PHREEQC-A computer program for speciation, reaction-path, advective-transport, and inverse geochemical calculations, Water-Resources Investigations Report 95-4227. US Geological Survey, DenverGoogle Scholar
  14. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (version 2)-A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Water-Resources Investigations Report 99- 4259. US Geological Survey Earth Science Information Center, DenverGoogle Scholar
  15. Ramon A, Alonso EE (2013) Heave of a railway bridge: modelling gypsum crystal growth. Géotechnique 63(9):720–732.  https://doi.org/10.1680/geot.12.P.035 CrossRefGoogle Scholar
  16. Ramon A, Alonso EE, Olivella S (2017). Hydro-chemo-mechanical modelling of tunnels in sulfated rocks. Géotechnique 67(11):968–982.  https://doi.org/10.1680/jgeot.SiP17.P.252 CrossRefGoogle Scholar
  17. Ruch C, Wirsing G (2013) Erkundung und Sanierungsstrategien im Erdwärmesonden-Schadensfall Staufen i. Br (Exploration and rehabilitation strategies in case of damaging geothermal heat exchangers in Staufen i. Br. Geotechnik 36(3):147–159CrossRefGoogle Scholar
  18. Sass I, Burbaum U (2010) Damage to the historic town of Staufen (Germany) caused by geothermal drillings through anhydrite-bearing formations. Acta Carsologica 39(2):233–245CrossRefGoogle Scholar
  19. Serafeimidis K, Anagnostou G (2014) On the crystallisation pressure of gypsum. Environ Earth Sci 72:4985–4994CrossRefGoogle Scholar
  20. Serafeimidis K, Anagnostou G, Vrakas A (2014) Scale effects in relation to swelling pressure in anhydritic claystones. In: International symposium on geomechanics from micro to macro, Cambridge, pp 795–800Google Scholar
  21. Wittke W (2006). Design, construction, supervision and long-term behaviour of tunnels in swelling rocks. In: Proc Eurock 2006, Van Cotthen, Charlier, Thimus, Tshibangu eds, Taylor, Francis Grup, London, pp 211–216Google Scholar
  22. Wittke W (2014) Rock mechanics based on an anisotropic jointed rock model (AJRM). Ernst, Sohn, BerlinCrossRefGoogle Scholar
  23. Wittke W, Wittke M, Wittke-Gattermann P, Stoffgesetz EC (2017) Berechnungsverfahren, felsmechanische Kennwerte und Ausführungsstatik für Tunnel im anhydritführenden Gebirge. Vortrag anlässlich des 3. Felsmechanik- und Tunnelbautages im WBI-Center am 11.05.2017, WBI-Print 20, WeinheimGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Centre Internacional de Metodes Numerics en Enginyeria, Division of Geotechnical Engineering and Geosciences, Department of Civil and Environmental EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain
  2. 2.Division of Geotechnical Engineering and Geosciences, Department of Civil and Environmental EngineeringUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations