Skip to main content
Log in

Characterizing Fracturing of Clay-Rich Lower Watrous Rock: From Laboratory Experiments to Nonlocal Damage-Based Simulations

  • Original Paper
  • Published:
Rock Mechanics and Rock Engineering Aims and scope Submit manuscript

Abstract

The work presented herein aims at characterizing and modeling fracturing (i.e., initiation and propagation of cracks) in a clay-rich rock. The analysis is based on two experimental campaigns. The first one relies on a probabilistic analysis of crack initiation considering Brazilian and three-point flexural tests. The second one involves digital image correlation to characterize crack propagation. A nonlocal damage model based on stress regularization is used for the simulations. Two thresholds both based on regularized stress fields are considered. They are determined from the experimental campaigns performed on Lower Watrous rock. The results obtained with the proposed approach are favorably compared with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

\({\varvec{\sigma }}\) :

Stress tensor

\(\overline{{\varvec{\sigma }}}\) :

Regularized stress tensor

\(\ell _{\mathrm{c}}\) :

Characteristic length

\({\varDelta }\) :

Laplacian operator

\({\varvec{n}}\) :

Normal to surface

\(P_{\mathrm{i}}\) :

Crack initiation probability

\(S_{\mathrm{i}}\) :

Crack initiation stress

\(\frac{\sigma _{0}^{m}}{\lambda _{0}}\) :

Scale parameter

\(V_{\mathrm{el}}\) :

Volume of an element

m :

Weibull modulus

\(\sigma _{\ell _{\mathrm{c}}}\) :

Nominal stress

\(S_{\mathrm{g}}\) :

Crack growth stress

\(K_{\mathrm{c}}\) :

Fracture toughness

\({\varGamma }\) :

Gamma function

\(\rho\) :

Mass density

d :

Damage

\(\psi _{\mathrm{e}}\) :

State potential

\({\mathcal {C}}\) :

Hooke’s tensor

\({\varvec{\epsilon }}\) :

Infinitesimal strain tensor

Y :

Thermodynamic force associated with damage

\(H_{\mathrm{e}}\) :

Heaviside function

\({\overline{\sigma }}_{\mathrm{I}}\) :

Maximum principal regularized stress

a :

Half-length of critical defect

\(\sigma _{\mathrm{w}}\) :

Weibull stress

\(\sigma _{\mathrm{w}i}\) :

Weibull stress associated with sample i

\(P_{\mathrm{F}}\) :

Failure probability

\(P_{\mathrm{F}i}\) :

Failure probability associated with sample i

\(\sigma_{\mathrm{f}}\) :

Critical maximum principal stress

H :

Stress heterogeneity factor

V :

Sample volume

\(H_{\mathrm{br}}\) :

Stress heterogeneity factor for Brazilian test

\(V_{\mathrm{br}}\) :

Sample volume for Brazilian test

\(H_{\mathrm{fl}}\) :

Stress heterogeneity factor for three-point flexural test

\(V_{\mathrm{fl}}\) :

Sample volume for three-point flexural test

\(n_{\mathrm{s}}\) :

Total number of samples

R :

Radius of Brazilian test sample

L :

Length of Brazilian test sample

\(K_{\mathrm{I}}\) :

Mode I stress intensity factor

\(K_{\mathrm{II}}\) :

Mode II stress intensity factor

\(r_{\mathrm{K}}\) :

Ratio between mode II and mode I stress intensity factors

References

  • Baecher GB, Einstein HH (1981) Scale effect in rock testing. Geophys Res Let 8:671–674

    Article  Google Scholar 

  • Baghbanan A, Lanru J (2007) Hydraulic properties of fractured masses with correlated fracture length and aperture. Int J R Mech Min Sci 44:704–719

    Article  Google Scholar 

  • Bažant Z, Belytschko TB (1985) Wave propagation in strain-softening bar: exact solution. J Eng Mech 111:381–389

    Article  Google Scholar 

  • Bažant ZP, Pijaudier-Cabot G (1988) Nonlocal continuum damage, localization instability and convergence. J Appl Mech 55:521–539

    Google Scholar 

  • Beremin FM (1983) A local criterion for cleavage fracture of a nuclear pressure vessel steel. Metall Trans 14:2277–2287

    Article  Google Scholar 

  • Besnard G, Hild F, Roux S (2006) “Finite-element” displacement fields analysis from digital images: application to Portevin-Le Chatelier bands. Exp Mech 46:789–804

    Article  Google Scholar 

  • Bush AJ (1976) Experimentally determined stress-intensity factors for single-edge-crack round bars in bending. Exp Mech 16:249–257

    Article  Google Scholar 

  • Code_Aster (2010). EDF R&D. http://www.code-aster.org. Accessed 1 June 2010

  • Da Silva ACR, Proença SPB, Billardon R, Hild F (2004) Probabilistic approach to predict cracking in lightly reinforced microconcrete panels. J Eng Mech 130:931–941

    Article  Google Scholar 

  • De Borst R, Sluys LJ, Muhlaus HB, Pamin J (1993) Fundamental issues in finite element analysis of localization of deformation. Eng Comput 10:99–121

    Article  Google Scholar 

  • Forquin P, Rota L, Charles Y, Hild F (2004) A method to determine the macroscopic toughness scatter of brittle materials. Eur J Mech A Solids 125:171–187

    Google Scholar 

  • Funatsu T, Seto M, Shimada H, Matsui K, Kuruppu M (2004) Combined effects of increasing temperature and confining pressure on the fracture toughness of clay bearing rocks. Int J R Mech Min Sci 41:927–938

    Article  Google Scholar 

  • Gosh A (1999) A FORTRAN program for fitting Weibull distribution and generating samples. Comput Geosci 25:729–738

    Article  Google Scholar 

  • Guy N (2010) Modélisation probabiliste de l’endommagement des roches : application au stockage géologique du \({\text{CO}}_2\). Ph.D. thesis, Ecole Normale Supérieure de Cachan

  • Guy N, Seyedi D, Hild F (2010) Hydro-mechanical modelling of geological CO\(_{2}\) storage and the study of possible caprock fracture mechanisms. Georisk 4:110–117

    Google Scholar 

  • Guy N, Seyedi D, Hild F (2012) A probabilistic nonlocal model for crack initiation and propagation in heterogeneous brittle materials. Int J Numer Methods Eng 90:1053–1072

    Google Scholar 

  • Hild F, Roux S (2006) Digital image correlation: from displacement measurement to identification of elastic properties—a review. Strain 42:69–80

    Article  Google Scholar 

  • Jobmann M, Wilsnack T, Voigt HD (2010) Investigation of damage induced permeability of Opalinus clay. Int J R Mech Min Sci 47:279–285

    Article  Google Scholar 

  • Kanninen MF, Brust FW, Ahmad J, Abou-Sayed IS (1982) The numerical simulation of crack growth in weld-induced residual stress fields. In: Kula E, Weiss V (eds) Residual stress and stress relaxation. Plenum Press, New York, pp 975–986

    Google Scholar 

  • Lasry D, Belytschko T (1988) Localization limiters in transient problems. Int J Solids Struct 24:581–597

    Article  Google Scholar 

  • Lawn BR (1993) Fracture of brittle material. Cambridge University Press, Cambridge

    Google Scholar 

  • Le Nindre YM, Gauss I (2004) Characterisation of the lower watrous aquitard as major seal for \({\text{ CO }}_2\) geological sequestration. In: 7th International Conference on Greenhouse Gas Control Technologies, Vancouver, Canada, 5–9 Sept

  • Lorentz E, Benallal A (2005) Gradient constitutive relations: numerical aspects and application to gradient damage. Comput Methods Appl Mech Eng 194:5191–5220

    Article  Google Scholar 

  • Lyakhovsky V, Hamiel Y, Ben-Zion Y (2011) A non-local visco-elastic damage model and dynamic fracturing. J Mech Phys Solids 59:1752–1776

    Article  Google Scholar 

  • Murakami Y (1987) Stress intensity factors handbook. Pergamon Press, Oxford

    Google Scholar 

  • Nose T, Fuji T (1988) Evaluation of fracture toughness for ceramics materials by a single-edge-precracked-beam method. J Am Ceram Soc 71:328–333

    Article  Google Scholar 

  • Ouchterlony F (1988) ISRM commission on testing methods; suggested methods for determining fracture toughness of rock. Int J R Mech Min Sci 25:71–96

    Google Scholar 

  • Pancheri P, Bosetti P, Dal Maschio R, Sglavo VM (1998) Production of sharp cracks in ceramic materials by three-point bending of sandwiched specimens. Eng Frac Mech 59:447–456

    Article  Google Scholar 

  • Peerlings RHJ, de Borst R, Brekelmans WAM, Geers MGD (1998) Gradient-enhanced damage modelling of concrete fracture. Mech Cohes Frict Mater 3:323–342

    Article  Google Scholar 

  • Peerlings RHJ, Geers MGD, de Borst R, Brekelmans WAM (2001) A critical comparison of non-local and gradient-enhanced softening continua. Int J Solids Struct 38:7723–7746

    Article  Google Scholar 

  • Pietruszczak S, Mróz Z (1981) Finite element analysis of deformation of strain-softening materials. Int J Numer Methods Eng 17:327–334

    Article  Google Scholar 

  • Pijaudier-Cabot G, Bažant ZP (1987) Nonlocal damage theory. J Eng Mech 113:1512–1533

    Article  Google Scholar 

  • Preston C, Monea M, Jazrawi W, Brown K, Whittaker S, White D, Law D, Chalaturnyk R, Rostron B (2005) IEA GHG Weyburn \({\text{ CO }}_2\) monitoring and storage project. Fuel Process Technol 86:1547–1568

    Article  Google Scholar 

  • Roux S, Hild F (2006) Stress intensity factor measurements from digital image correlation: post-processing and integrated approaches. Int J Fract 140:141–157

    Article  Google Scholar 

  • Srawley JE (1976) Wide range stress intensity factor expressions for ASTM E399 standard fracture toughness specimens. Int J Frac 12:475–476

    Google Scholar 

  • Sutton MA, Orteu JJ, Schreier H (2009) Image correlation for shape, motion and deformation measurements: basic concepts, theory and applications. Springer, New York

    Google Scholar 

  • Triantafyllidis N, Aifantis EC (1986) A gradient approach to localization of deformation: I. Hyperelastic materials. J Elast 16:225–237

    Article  Google Scholar 

  • Weibull W (1939) A statistical theory of the strength of materials. Generalstabens Litografiska Anstalts Förlag, Stockholm

    Google Scholar 

  • Wu D, Zhou J, Li Y (2006) Unbiased estimation of Weibull parameters with the linear regression method. J Eur Ceram Soc 26:1099–1105

    Article  Google Scholar 

  • Zuo JP, He-Ping X, Feng D, Yang J (2014) Three point bending test investigation of the fracture behavior of siltstone after thermal treatment. Int J R Mech Min Sci 70:133–143

    Google Scholar 

Download references

Acknowledgements

This work was funded by BRGM through an “Institut Carnot” research Grant. The authors wish to thank Dr. Steve Whittaker and Saskatchewan Industry and Resource for kindly providing the samples of Lower Watrous caprock.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Guy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guy, N., Seyedi, D.M. & Hild, F. Characterizing Fracturing of Clay-Rich Lower Watrous Rock: From Laboratory Experiments to Nonlocal Damage-Based Simulations. Rock Mech Rock Eng 51, 1777–1787 (2018). https://doi.org/10.1007/s00603-018-1432-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00603-018-1432-2

Keywords

Navigation