Skip to main content
Log in

Four-Body Scattering Equations Including a Three-Body Force in the Faddeev–Yakubovsky Theory

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Faddeev–Yakubovsky four-nucleon scattering equations are derived including a three-body force. From the asymptotic form of the Yakubovsky-components we obtain scattering amplitudes of all outgoing channels in a direct manner. We present these equations in the momentum space representation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.D. Faddeev, Sov. Phys. JETP 12, 1014 (1957)

    Google Scholar 

  2. O.A. Yakubovsky, Sov. J. Nucl. Phys. 5, 937 (1967)

    Google Scholar 

  3. W. Glöckle, The Quantum Mechanical Few-Body Problem (Springer, Berlin, 1983)

    Book  Google Scholar 

  4. E.O. Alt, W. Sandhas, Nucl. Phys. B 2, 181 (1967)

    Article  Google Scholar 

  5. E.O. Alt, P. Grassberger, W. Sandhas, Nucl. Phys. B 2, 167 (1967)

    Article  ADS  Google Scholar 

  6. G. Bencze, C. Chandler, Phys. Lett. 90A, 162 (1982)

    Article  ADS  Google Scholar 

  7. G. Cattapan, V. Vanzani, Phys. Rev. C 19, 1168 (1979)

    Article  ADS  Google Scholar 

  8. H. Kamada, S. Oryu, Few-Body Syst. 12, 201 (1992)

    Article  ADS  Google Scholar 

  9. H. Kamada, W. Glöckle, Nucl. Phys. A 548, 205 (1992)

    Article  ADS  Google Scholar 

  10. W. Glöckle, H. Kamada, Phys. Rev. Lett. 71, 971 (1993)

    Article  ADS  Google Scholar 

  11. W.M. Kloet, J.A. Tjon, Ann. Phys. 79, 407 (1973)

    Article  ADS  Google Scholar 

  12. H. Witała, T. Cornelius, W. Glöckle, Few-Body Syst. 3, 123 (1988)

    Article  ADS  Google Scholar 

  13. T. Takemiya, Prog. Theor. Phys. 86, 975 (1991)

    Article  ADS  Google Scholar 

  14. W. Glöckle, H. Witała, D. Hüber, H. Kamada, J. Golak, Phys. Rep. 274, 107 (1996)

    Article  ADS  Google Scholar 

  15. Ch. Elster, W. Glöckle, Phys. Rev. C 55, 1058 (1997)

    Article  ADS  Google Scholar 

  16. N. Sakamoto et al., Phys. Lett. B 367, 60 (1996)

    Article  ADS  Google Scholar 

  17. H. Witała, W. Glöckle, D. Hüber, J. Golak, H. Kamada, Phys. Rev. Lett. 81, 1183 (1998)

    Article  ADS  Google Scholar 

  18. S. Nemoto et al., Few-Body Syst. Suppl. 10, 339 (1999)

    Article  Google Scholar 

  19. H. Sakai, K. Sekiguchi et al., Phys. Rev. Lett. 84, 5288 (2000)

    Article  ADS  Google Scholar 

  20. K. Sekiguchi et al., Phys. Rev. C 96, 064001 (2017) and references therein

  21. K. Sagara et al., Phys. Rev. C 50, 576 (1994)

    Article  ADS  Google Scholar 

  22. J. Fujita, H. Miyazawa, Prog. Theor. Phys. 17, 360 (1957)

    Article  ADS  Google Scholar 

  23. S.A. Coon, H.K. Han, Few Body Syst. 30, 131 (2001)

    Article  ADS  Google Scholar 

  24. M.R. Robilotta, H.T. Coelho, Nucl. Phys. A 460, 645 (1986)

    Article  ADS  Google Scholar 

  25. B.S. Pudliner, V.R. Pandharipande, J. Carlson, S.C. Pieper, R.B. Wiringa, Phys. Rev. C 56, 1720 (1997)

    Article  ADS  Google Scholar 

  26. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  27. R. Machleidt, Phys. Rev. C 63, 024001 (2001)

    Article  ADS  Google Scholar 

  28. V.G.J. Stoks, R.A.M. Klomp, C.P.F. Terheggen, J.J. de Swart, Phys. Rev. C 49, 2950 (1994)

    Article  ADS  Google Scholar 

  29. E. Epelbaum, H. Krebs, U.-G. Meissner, Phys. Rev. Lett. 115, 122301 (2015)

    Article  ADS  Google Scholar 

  30. D.R. Entem, N. Kaiser, R. Machleidt, Y. Nosyk, Phys. Rev. C 91, 014002 (2015)

    Article  ADS  Google Scholar 

  31. D.R. Entem, R. Machleidt, Y. Nosyk, Phys. Rev. C 96, 024004 (2017)

    Article  ADS  Google Scholar 

  32. P. Reinert, H. Krebs, E. Epelbaum, Eur. Phys. J. A 54, 86 (2018)

    Article  ADS  Google Scholar 

  33. S. Binder et al., Phys. Rev. C 93, 044002 (2016)

    Article  ADS  Google Scholar 

  34. R. Skibiński et al., Phys. Rev. C 93, 064002 (2016)

    Article  ADS  Google Scholar 

  35. H. Witała et al., Few-Body Syst. 57, 1213–1225 (2016)

    Article  ADS  Google Scholar 

  36. E. Epelbaum et al., Phys. Rev. C 99, 024313 (2019)

    Article  ADS  Google Scholar 

  37. A. Stadler, W. Glöckle, P.U. Sauer, Phys. Rev. C 44, 2319 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  38. D. Hüber, H. Kamada, H. Witała, W. Glöckle, Acta Phys. B 28, 1677 (1997)

    Google Scholar 

  39. H. Witała, H. Kamada, A. Nogga, W. Glöckle, Ch. Elster, D. Hüber, Phys. Rev. C 59, 3035 (1999)

    Article  ADS  Google Scholar 

  40. H. Witała, J. Golak, R. Skibiński, K. Topolnicki, JPS Conf. Proc. 13, 020057 (2017)

    Google Scholar 

  41. W. Glöckle, Z. Phys. 271, 31 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  42. D. Hüber, H. Witała, W. Glöckle, Few-Body Syst. 14, 171 (1993)

    Article  ADS  Google Scholar 

  43. W. Glöckle, H. Kamada, Nucl. Phys. A 560, 541 (1993)

    Article  ADS  Google Scholar 

  44. H. Kamada, Y. Koike, W. Glöckle, Prog. Theor. Phys. 109, 869 (2003)

    Article  ADS  Google Scholar 

  45. E. Uzu, H. Kamada, Y. Koike, Phys. Rev. C 68, 061001(R) (2003)

    Article  ADS  Google Scholar 

  46. A. Deltuva, A.C. Fonseca, Phys. Rev. C 90, 044002 (2014)

    Article  ADS  Google Scholar 

  47. J. Carbonell et al., Prog. Part. Nucl. Phys. 74, 55 (2014)

    Article  ADS  Google Scholar 

  48. Low Energy Nuclear Physics International Collaboration (LENPIC), (2014). http://www.lenpic.org/

Download references

Acknowledgements

Author (H. K.) would like to thank H. Witała, J. Golak, R. Skibiński, K. Topolnicki, A. Nogga and E. Epelbaum for fruitful discussions during the 4th LENPIC meeting in Bochum, Germany [48]. This work was supported by the Polish National Science Centre under Grant No. 2016/22/M/ST2/00173.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kamada.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection “Ludwig Faddeev Memorial”.

Appendices

Appendix A

Here we derive the scattering operator \(U^{[3+1]} \) of Eq. (53). First, Eq. (9) is rewritten as

$$\begin{aligned} G_0 \tau= & {} (G_0+G_0 t G_0) (VP+W(1+P)) \nonumber \\= & {} (G_0+G_0tG_0)(G_0^{-1} - \{\mathcal{G}^{[3+1]}\} ^{-1} -V) \nonumber \\= & {} (1+G_0 t) - (G_0+G_0tG_0) \{\mathcal{G}^{[3+1]}\} ^{-1} - G_0 t \nonumber \\= & {} 1- (G_0+G_0tG_0) \{\mathcal{G}^{[3+1]}\} ^{-1}, \end{aligned}$$
(76)

then we have

$$\begin{aligned} (1-G_0\tau ) ^{-1} = \mathcal{G}^{[3+1]} (G_0 + G_0 t G_0) ^{-1}. \end{aligned}$$
(77)

and

$$\begin{aligned} (1-G_0\tau ) ^{-1} G_0 \tau= & {} \mathcal{G}^{[3+1]} (G_0 + G_0 t G_0) ^{-1} G_0 (tP + (1 + t G_0) W (1+P) ) \nonumber \\= & {} \mathcal{G}^{[3+1]} (VP +W(1+P) ). \end{aligned}$$
(78)

Equation (77) is multiplied with Eq. (41) from the left hand side we have

$$\begin{aligned} \psi _{1}= & {} \psi _t^F \delta _{[3+1]}+ \mathcal{G}^{[3+1]} (VP +W(1+P) ) (-P_{34}\psi _{1}+\psi _{2}) \nonumber \\&+\, \mathcal{G}^{[3+1]} W_{123}^{(3)}(-P_{34}P+\tilde{P})(\psi _{1}-P_{34}\psi _{1}+\psi _{2}),~~~ \end{aligned}$$
(79)

Comparing it with Eq. (51) we obtain Eq. (53).

Appendix B

Here we derive the scattering operator \(U^{[2+2]} \) in Eq.(57). To this end we start with \(G_0 t \tilde{P} \)

$$\begin{aligned} G_0 t \tilde{P}= & {} (G_0+G_0 t G_0) V \tilde{P} \nonumber \\= & {} (G_0+G_0tG_0)(G_0^{-1} - \{\mathcal{G}^{[2+2]}\} ^{-1} - V) \nonumber \\= & {} (1+G_0 t) - (G_0+G_0tG_0) \{\mathcal{G}^{[2+2]}\} ^{-1} - G_0 t \nonumber \\= & {} 1- (G_0+G_0tG_0) \{\mathcal{G}^{[2+2]}\} ^{-1} \end{aligned}$$
(80)

to obtain

$$\begin{aligned} (1-G_0t \tilde{P} ) ^{-1} = \mathcal{G}^{[2+2]} (G_0 + G_0 t G_0) ^{-1} \end{aligned}$$
(81)

and

$$\begin{aligned} (1-G_0t \tilde{P}) ^{-1} G_0 t \tilde{P}= & {} \mathcal{G}^{[2+2]} (G_0 + G_0 t G_0) ^{-1} G_0 t \tilde{P} \nonumber \\= & {} \mathcal{G}^{[2+2]} V \tilde{P}. \end{aligned}$$
(82)

When Eq. (81) is multiplied by Eq. (45) from the left, we get

$$\begin{aligned} \psi _{2}= \phi _{d:12} \phi _{d:34} \delta _{[2+2]}+ \mathcal{G}^{[2+2]} V \tilde{P}(1-P_{34})\psi _{1} \end{aligned}$$
(83)

Comparing it with Eq. (56) we obtain Eq. (57).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kamada, H. Four-Body Scattering Equations Including a Three-Body Force in the Faddeev–Yakubovsky Theory. Few-Body Syst 60, 33 (2019). https://doi.org/10.1007/s00601-019-1501-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-019-1501-4

Navigation