Skip to main content
Log in

Nuclear Electromagnetic Currents to Fourth Order in Chiral Effective Field Theory

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Recently, we have shown that the continuity equation for the nuclear vector and axial current operators acquires additional terms if the latter depend on the energy transfer. We analyze in detail the electromagnetic single-nucleon four-current operators and verify the validity of the modified continuity equation for all one- and two-nucleon contributions up to fourth order in the chiral expansion. We also derive, for the first time, the leading contribution to the three-nucleon charge operator which appears at this order. Our study completes the derivation of the electroweak nuclear currents to fourth order in the chiral expansion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. The dominant contributions to the single- and two-nucleon operators appear at orders \(Q^{-3}\) and \(Q^{-1}\), respectively. When the nucleon mass m is counted according to \(m \sim \varLambda _b^2/Q\) [21] as done here and commonly employed in few-nucleon studies, see e.g. Refs. [2, 4, 7, 13,14,15,16,17], no corrections to the charge and current operators appear at order \(Q^{-2}\). Thus, the terms LO, NLO, N\(^2\)LO and \(\hbox {N}^3\hbox {LO}\) refer to the contributions at orders \(Q^{-3}\), \(Q^{-1}\), \(Q^{0}\) and Q, respectively. Notice that the authors of Refs. [22,23,24] employ the counting scheme with \(m \sim \varLambda _b\) leading to a different expansion pattern.

  2. The minus sign is missing in Eq. (4.3) of Ref. [29] and for the quantities \(\delta J_{c2, \, c5, \, c6, \, c7}\) in Eq. (4.6) of that paper.

  3. Requiring, in addition to renormalizability of the single- and two-nucleon current operators, also factorizability of the exchanged pions in the three-nucleon charge operator, see [33] for more details, leads to the stronger constraints on the phases, namely \(\bar{\beta }_1 = 1\), \(\bar{\beta }_4 = -1\) and \(\bar{\beta }_5 = \bar{\beta }_6 = -1/2\).

  4. We adopt here the commonly accepted sign convention for the electromagnetic current, which differs from the one used in our paper [33].

References

  1. D.R. Entem, N. Kaiser, R. Machleidt, Y. Nosyk, Phys. Rev. C 91(1), 014002 (2015)

    Article  ADS  Google Scholar 

  2. E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. Lett. 115(12), 122301 (2015)

    Article  ADS  Google Scholar 

  3. D.R. Entem, N. Kaiser, R. Machleidt, Y. Nosyk, Phys. Rev. C 92(6), 064001 (2015)

    Article  ADS  Google Scholar 

  4. P. Reinert, H. Krebs, E. Epelbaum, Eur. Phys. J. A 54(5), 86 (2018)

    Article  ADS  Google Scholar 

  5. D.R. Entem, R. Machleidt, Y. Nosyk, Phys. Rev. C 96(2), 024004 (2017)

    Article  ADS  Google Scholar 

  6. A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984)

    Article  ADS  Google Scholar 

  7. E. Epelbaum, H. Krebs, U.-G. Meißner, Eur. Phys. J. A 51(5), 53 (2015)

    Article  ADS  Google Scholar 

  8. R.J. Furnstahl, N. Klco, D.R. Phillips, S. Wesolowski, Phys. Rev. C 92(2), 024005 (2015)

    Article  ADS  Google Scholar 

  9. U. van Kolck, Phys. Rev. C 49, 2932 (1994)

    Article  ADS  Google Scholar 

  10. E. Epelbaum, W. Glöckle, U.-G. Meißner, Nucl. Phys. A 747, 362 (2005)

    Article  ADS  Google Scholar 

  11. E. Epelbaum, Phys. Lett. B 639, 456 (2006)

    Article  ADS  Google Scholar 

  12. S. Ishikawa, M.R. Robilotta, Phys. Rev. C 76, 014006 (2007)

    Article  ADS  Google Scholar 

  13. V. Bernard, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 77, 064004 (2008)

    Article  ADS  Google Scholar 

  14. V. Bernard, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 84, 054001 (2011)

    Article  ADS  Google Scholar 

  15. H. Krebs, A. Gasparyan, E. Epelbaum, Phys. Rev. C 85, 054006 (2012)

    Article  ADS  Google Scholar 

  16. H. Krebs, A. Gasparyan, E. Epelbaum, Phys. Rev. C 87(5), 054007 (2013)

    Article  ADS  Google Scholar 

  17. E. Epelbaum, A.M. Gasparyan, H. Krebs, C. Schat, Eur. Phys. J. A 51(3), 26 (2015)

    Article  ADS  Google Scholar 

  18. L. Girlanda, A. Kievsky, M. Viviani, Phys. Rev. C 84, 014001 (2011)

    Article  ADS  Google Scholar 

  19. T.S. Park, D.P. Min, M. Rho, Phys. Rep. 233, 341 (1993)

    Article  ADS  Google Scholar 

  20. T.S. Park, D.P. Min, M. Rho, Nucl. Phys. A 596, 515 (1996)

    Article  ADS  Google Scholar 

  21. S. Weinberg, Nucl. Phys. B 363, 3 (1991)

    Article  ADS  Google Scholar 

  22. S. Pastore, R. Schiavilla, J.L. Goity, Phys. Rev. C 78, 064002 (2008)

    Article  ADS  Google Scholar 

  23. S. Pastore, L. Girlanda, R. Schiavilla, M. Viviani, R.B. Wiringa, Phys. Rev. C 80, 034004 (2009)

    Article  ADS  Google Scholar 

  24. S. Pastore, L. Girlanda, R. Schiavilla, M. Viviani, Phys. Rev. C 84, 024001 (2011)

    Article  ADS  Google Scholar 

  25. E. Epelbaum, W. Glöckle, U.-G. Meißner, Nucl. Phys. A 637, 107 (1998)

    Article  ADS  Google Scholar 

  26. E. Epelbaum, Eur. Phys. J. A 34, 197 (2007)

    Article  ADS  Google Scholar 

  27. E. Epelbaum, H.W. Hammer, U.-G. Meißner, Rev. Mod. Phys. 81, 1773 (2009)

    Article  ADS  Google Scholar 

  28. S. Kölling, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 80, 045502 (2009)

    Article  ADS  Google Scholar 

  29. S. Kölling, E. Epelbaum, H. Krebs, U.-G. Meißner, Phys. Rev. C 84, 054008 (2011)

    Article  ADS  Google Scholar 

  30. M. Hoferichter, P. Klos, A. Schwenk, Phys. Lett. B 746, 410 (2015)

    Article  ADS  Google Scholar 

  31. M. Walzl, U.-G. Meißner, Phys. Lett. B 513, 37 (2001)

    Article  ADS  Google Scholar 

  32. J.L. Friar, Phys. Rev. C 60, 034002 (1999)

    Article  ADS  Google Scholar 

  33. H. Krebs, E. Epelbaum, U.-G. Meißner, Ann. Phys. 378, 317 (2017)

    Article  ADS  Google Scholar 

  34. A. Baroni, L. Girlanda, S. Pastore, R. Schiavilla, M. Viviani, Phys. Rev. C 93(1), 015501 (2016). Erratum: [Phys. Rev. C 93, no. 4, 049902 (2016)] Erratum: [Phys. Rev. C 95, no. 5, 059901 (2017)]

    Article  ADS  Google Scholar 

  35. B. Kubis, U.-G. Meißner, Nucl. Phys. A 679, 698 (2001)

    Article  ADS  Google Scholar 

  36. M.R. Schindler, J. Gegelia, S. Scherer, Eur. Phys. J. A 26, 1 (2005)

    Article  ADS  Google Scholar 

  37. N. Fettes, U.-G. Meißner, M. Mojžiš, S. Steininger, Ann. Phys. 283, 273 (2000). Erratum: [Ann. Phys. 288, 249 (2001)]

  38. D.R. Phillips, T.D. Cohen, Nucl. Phys. A 668, 45 (2000)

    Article  ADS  Google Scholar 

  39. N. Fettes, U.-G. Meißner, S. Steininger, Nucl. Phys. A 640, 199 (1998)

    Article  ADS  Google Scholar 

  40. L.E. Marcucci et al., J. Phys. G 43, 023002 (2016)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by DFG (SFB/TR 110, “Symmetries and the Emergence of Structure in QCD”) and the BMBF (Grant No. 05P15PCFN1). Further support was provided by the Chinese Academy of Sciences (CAS) President’s International Fellowship Initiative (PIFI) (Grant No. 2018DM0034) and by VolkswagenStiftung (Grant No. 93562).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Krebs.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection “Ludwig Faddeev Memorial”.

Unitary Transformation to Exactly Generate the Off-Shell Single-Nucleon Current in Eq. (2.16)

Unitary Transformation to Exactly Generate the Off-Shell Single-Nucleon Current in Eq. (2.16)

In this appendix we construct a unitary transformation, which generates the off-shell single-nucleon longitudinal current in Eq. (2.16).

In order to see how the nuclear operators are affected by time-dependent unitary transformations, we perform an additional unitary transformation of the kind

$$\begin{aligned} U (t)= & {} \exp \big (J(t)\big ), \quad J(t)\,=\,\int d^3 x \,v_\mu (\mathbf {x}, t) \, X^\mu (\mathbf {x}\,). \end{aligned}$$
(1.1)

where \(v_\mu (x)\) is an external vector source and \(X_\mu (\mathbf {x}\,)\) is some antihermitean operator. The unitary transformation changes the Hamilton operator in the presence of the vector source to

$$\begin{aligned} W [v] \rightarrow U^\dagger (t) W[v] U(t) + \bigg (i\frac{\partial }{\partial t}U^\dagger (t)\bigg ) U(t)=W[v]+\big [\hat{H}, \, \hat{J}(t)\big ] - i\frac{\partial }{\partial t} J(t) + \mathcal{O}(v^2), \end{aligned}$$
(1.2)

with \(H:=W[0]\). For the vector current operator one obtainsFootnote 4

$$\begin{aligned} V_\mu (\mathbf {k})= & {} -\frac{\delta W[v]}{\delta \tilde{v}^\mu (\mathbf {k},k_0)}\Bigg |_{v=0}, \quad \tilde{v}^\mu (\mathbf {k},k_0) :=\int \frac{d^4 x}{(2\pi )^4} e^{i k\cdot x} v^\mu (x), \end{aligned}$$
(1.3)

see [33] for more details, where the operator \(W[v]\) is taken at \(t=0\):

$$\begin{aligned} W[v]=H+\int d^3 x \,v_\mu (\mathbf {x},0)\, \tilde{V}^\mu (\mathbf {x}\,) \,=\,H + \int d^4 k\, \tilde{v}_\mu (\mathbf {k},k_0)\, V^\mu (\mathbf {k}\,). \end{aligned}$$
(1.4)

Using

$$\begin{aligned}&J(0)=\int d^3 x\, v^\mu (\mathbf {x},0) \, X_\mu (\mathbf {x}\,)\,=\,\int d^4 k \,\tilde{v}^\mu (\mathbf {k},k_0)\, \tilde{X}_\mu (\mathbf {k}\,), \nonumber \\&i\frac{\partial }{\partial t} J(t)\bigg |_{t=0}=\int d^3 x\, i\,\dot{v}^\mu (\mathbf {x},0) \, X_\mu (\mathbf {x}\,)\,=\,\int d^4 k\, k_0 \tilde{v}^\mu (\mathbf {k},k_0)\, \tilde{X}_\mu (\mathbf {k}\,), \end{aligned}$$
(1.5)

where

$$\begin{aligned} \tilde{X}^\mu (\mathbf {k}\,):=\int d^3 x \,e^{i \mathbf {k}\cdot \mathbf {x}}\, X^\mu (\mathbf {x}\,), \end{aligned}$$
(1.6)

we obtain

$$\begin{aligned} V^\mu (\mathbf {k}\,)\rightarrow V^\mu (\mathbf {k}\,) - \bigg (k_0 \tilde{X}^\mu (\mathbf {k}\,) - \big [\hat{H}, \, \hat{\tilde{X}}^\mu (\mathbf {k}\,)\big ]\bigg ). \end{aligned}$$
(1.7)

Thus, choosing

$$\begin{aligned} \langle p^\prime |\tilde{X}^0(\mathbf {k}\,)|p\rangle= & {} 0,\nonumber \\ \langle p^\prime |\tilde{\mathbf {X}}(\mathbf {k}\,) |p\rangle= & {} \chi ^{\prime \,\dagger }\bigg (-\mathbf {k} \frac{e}{\mathbf {k}^2}\bigg [\big ({G}_E(\mathbf {k}^2)-{G}_E(0)\big )+\frac{i}{2m^2}\mathbf {k}\cdot (\mathbf {k}_1\times \varvec{\sigma })\big ({G}_M(\mathbf {k}^2) -\,{G}_M(0)\big )\bigg ]\bigg )\chi ,\nonumber \\ \end{aligned}$$
(1.8)

we obtain the off-shell term given in Eq. (2.16). It is important to emphasize that the derivation of Eq. (1.7) does not rely on chiral perturbation theory. No approximations were made to derive this equation (except for neglecting the contributions involving more than a single insertion of the external vector source).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krebs, H., Epelbaum, E. & Meißner, UG. Nuclear Electromagnetic Currents to Fourth Order in Chiral Effective Field Theory. Few-Body Syst 60, 31 (2019). https://doi.org/10.1007/s00601-019-1500-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-019-1500-5

Navigation