Skip to main content
Log in

Chiral Corrections to Baryon Electromagnetic Form Factors

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

Corrections motivated by chiral symmetry arguments have long been known to give important contributions to hadronic observables, particularly at low momentum transfer. It is possible to separate these approaches into two broad groups; either the corrections are implemented at the parton level, or at the hadron level. We explore the results of incorporating pion loop corrections at the hadron level to a calculation of electromagnetic form factors in the NJL model. These calculations are compared with the result of an earlier implementation of pion loops at the parton level using the same NJL model formalism. A particular parameter set yields a good description of low energy nucleon properties within both approaches. However, for the \(\varSigma ^-\) there is a remarkable improvement when the chiral corrections are implemented at the hadronic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Isgur, G. Karl, J. Soffer, Phys. Rev. D 35, 1665 (1987). https://doi.org/10.1103/PhysRevD.35.1665

    Article  ADS  Google Scholar 

  2. T. Melde, K. Berger, L. Canton, W. Plessas, R.F. Wagenbrunn, Phys. Rev. D 76, 074020 (2007). https://doi.org/10.1103/PhysRevD.76.074020

    Article  ADS  Google Scholar 

  3. A. Chodos, R.L. Jaffe, K. Johnson, C.B. Thorn, Phys. Rev. D 10, 2599 (1974). https://doi.org/10.1103/PhysRevD.10.2599

    Article  ADS  Google Scholar 

  4. I.C. Cloet, C.D. Roberts, A.W. Thomas, Phys. Rev. Lett. 111, 101803 (2013). https://doi.org/10.1103/PhysRevLett.111.101803

    Article  ADS  Google Scholar 

  5. F. Iachello, A.D. Jackson, A. Lande, Phys. Lett. 43B, 191 (1973). https://doi.org/10.1016/0370-2693(73)90266-9

    Article  ADS  Google Scholar 

  6. R. Bijker, F. Iachello, Phys. Rev. C 69, 068201 (2004). https://doi.org/10.1103/PhysRevC.69.068201

    Article  ADS  Google Scholar 

  7. G.A. Miller, A.W. Thomas, S. Theberge, Phys. Lett. 91B, 192 (1980). https://doi.org/10.1016/0370-2693(80)90428-1

    Article  ADS  Google Scholar 

  8. B. Kubis, U.G. Meissner, Eur. Phys. J. C 18, 747 (2001). https://doi.org/10.1007/s100520100570

    Article  ADS  Google Scholar 

  9. N. Ishii, W. Bentz, K. Yazaki, Phys. Lett. B 301, 165 (1993). https://doi.org/10.1016/0370-2693(93)90683-9

    Article  ADS  Google Scholar 

  10. O. Schroeder, H. Reinhardt, H. Weigel, Nucl. Phys. A 651, 174 (1999). https://doi.org/10.1016/S0375-9474(99)00131-1

    Article  ADS  Google Scholar 

  11. I.C. Clot, W. Bentz, A.W. Thomas, Phys. Rev. C 90, 045202 (2014). https://doi.org/10.1103/PhysRevC.90.045202

    Article  ADS  Google Scholar 

  12. M.E. Carrillo-Serrano, W. Bentz, I.C. Clot, A.W. Thomas, Phys. Lett. B 759, 178 (2016). https://doi.org/10.1016/j.physletb.2016.05.065

    Article  ADS  Google Scholar 

  13. D. Ebert, T. Feldmann, H. Reinhardt, Phys. Lett. B 388, 154 (1996). https://doi.org/10.1016/0370-2693(96)01158-6

    Article  ADS  Google Scholar 

  14. S. Weinberg, Phys. Rev. Lett. 17, 616 (1966). https://doi.org/10.1103/PhysRevLett.17.616

    Article  ADS  Google Scholar 

  15. H. Pagels, Phys. Rep. 16, 219 (1975). https://doi.org/10.1016/0370-1573(75)90039-3

    Article  ADS  MathSciNet  Google Scholar 

  16. A.W. Thomas, G. Krein, Phys. Lett. B 456, 5 (1999). https://doi.org/10.1016/S0370-2693(99)00455-4

    Article  ADS  Google Scholar 

  17. A.W. Thomas, G. Krein, Phys. Lett. B 481, 21 (2000). https://doi.org/10.1016/S0370-2693(00)00426-3

    Article  ADS  Google Scholar 

  18. A. Manohar, H. Georgi, Nucl. Phys. B 234, 189 (1984). https://doi.org/10.1016/0550-3213(84)90231-1

    Article  ADS  Google Scholar 

  19. M.E. Carrillo-Serrano, I.C. Clot, A.W. Thomas, Phys. Rev. C 90(6), 064316 (2014). https://doi.org/10.1103/PhysRevC.90.064316

    Article  ADS  Google Scholar 

  20. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 122, 345 (1961). https://doi.org/10.1103/PhysRev.122.345

    Article  ADS  Google Scholar 

  21. Y. Nambu, G. Jona-Lasinio, Phys. Rev. 124, 246 (1961). https://doi.org/10.1103/PhysRev.124.246

    Article  ADS  Google Scholar 

  22. G.A. Miller, Phys. Rev. C 66, 032201 (2002). https://doi.org/10.1103/PhysRevC.66.032201

    Article  ADS  Google Scholar 

  23. S. Theberge, A.W. Thomas, G.A. Miller, Phys. Rev. D 22, 2838 (1980). https://doi.org/10.1103/physrevd.23.2106.2, https://doi.org/10.1103/PhysRevD.22.2838. [Erratum: Phys. Rev. D23,2106(1981)]

  24. G.A. Miller, Int. Rev. Nucl. Phys. 1, 189 (1984). https://doi.org/10.1142/9789814415132_0003

    Article  ADS  Google Scholar 

  25. A.W. Thomas, Adv. Nucl. Phys. 13, 1 (1984). https://doi.org/10.1007/978-1-4613-9892-9_1

    Article  Google Scholar 

  26. F. Schlumpf, Relativistic constituent quark model for baryons. Ph.D. Thesis, Zurich U. (1992)

  27. H.H. Matevosyan, G.A. Miller, A.W. Thomas, Phys. Rev. C 71, 055204 (2005). https://doi.org/10.1103/PhysRevC.71.055204

    Article  ADS  Google Scholar 

  28. J.R. McKenney, N. Sato, W. Melnitchouk, C.R. Ji, Phys. Rev. D 93(5), 054011 (2016). https://doi.org/10.1103/PhysRevD.93.054011

    Article  ADS  Google Scholar 

  29. A.W. Thomas, Phys. Lett. B 126, 97 (1983). https://doi.org/10.1016/0370-2693(83)90026-6

    Article  ADS  Google Scholar 

  30. W. Melnitchouk, J. Speth, A.W. Thomas, Phys. Rev. D 59, 014033 (1998). https://doi.org/10.1103/PhysRevD.59.014033

    Article  ADS  Google Scholar 

  31. J.J. de Swart, Rev. Mod. Phys. 35, 916 (1963). https://doi.org/10.1103/RevModPhys.35.916. [Erratum: Rev. Mod. Phys.37,326(1965)]

    Article  ADS  Google Scholar 

  32. P.M.M. Maessen, T.A. Rijken, J.J. de Swart, Phys. Rev. C 40, 2226 (1989). https://doi.org/10.1103/PhysRevC.40.2226

    Article  ADS  Google Scholar 

  33. A. Reuber, K. Holinde, J. Speth, Nucl. Phys. A 570, 543 (1994). https://doi.org/10.1016/0375-9474(94)90073-6

    Article  ADS  Google Scholar 

  34. S. Theberge, The cloudy bag model. Ph.D. Thesis (1982). https://doi.org/10.14288/1.0095627. https://open.library.ubc.ca/cIRcle/collections/831/items/1.0095627. Accessed 31 July 2018

  35. M.B. Hecht, M. Oettel, C.D. Roberts, S.M. Schmidt, P.C. Tandy, A.W. Thomas, Phys. Rev. C 65, 055204 (2002). https://doi.org/10.1103/PhysRevC.65.055204

    Article  ADS  Google Scholar 

  36. R.D. Young, D.B. Leinweber, A.W. Thomas, S.V. Wright, Phys. Rev. D 66, 094507 (2002). https://doi.org/10.1103/PhysRevD.66.094507

    Article  ADS  Google Scholar 

  37. P.E. Shanahan, A.W. Thomas, R.D. Young, J.M. Zanotti, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, G. Schierholz, H. Stben, Phys. Rev. D 89, 074511 (2014). https://doi.org/10.1103/PhysRevD.89.074511

    Article  ADS  Google Scholar 

  38. P.E. Shanahan, A.W. Thomas, R.D. Young, J.M. Zanotti, R. Horsley, Y. Nakamura, D. Pleiter, P.E.L. Rakow, G. Schierholz, H. Stben, Phys. Rev. D 90, 034502 (2014). https://doi.org/10.1103/PhysRevD.90.034502

    Article  ADS  Google Scholar 

  39. J.J. Kelly, Phys. Rev. C 70, 068202 (2004). https://doi.org/10.1103/PhysRevC.70.068202

    Article  ADS  Google Scholar 

  40. R. Pohl et al., Nature 466, 213 (2010). https://doi.org/10.1038/nature09250

    Article  ADS  Google Scholar 

  41. K.A. Olive et al., Chin. Phys. C 38, 090001 (2014). https://doi.org/10.1088/1674-1137/38/9/090001

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We would like to thank W. Bentz for helpful comments on the manuscript. This work was supported by the Australian Research Council through Grant DP150103101 (AWT) as well as through the ARC Centre of Excellence for Particle Physics at the Terascale, CE110001104.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Perry.

Additional information

This article belongs to the Topical Collection “NSTAR 2017—The International Workshop on the Physics of Excited Nucleons”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perry, R.J., Carrillo-Serrano, M.E. & Thomas, A.W. Chiral Corrections to Baryon Electromagnetic Form Factors. Few-Body Syst 59, 127 (2018). https://doi.org/10.1007/s00601-018-1449-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-018-1449-9

Navigation