Skip to main content
Log in

Endpoint Model of Exclusive Processes

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

The endpoint model explains the scaling laws observed in exclusive hadronic reactions at large momentum transfer in all experimentally important regimes. The model, originally conceived by Feynman and others, assumes a single valence quark carries most of the hadron momentum. The quark wave function is directly related to the momentum transfer dependence of the reaction. After extracting the momentum dependence of the quark wave function from one process, it explains all the others. Endpoint quark-counting rules relate the number of quarks in a hadron to the power-law. A universal linear endpoint behavior explains the proton electromagnetic form factors \(F_{1}\) and \(F_{2}\), proton–proton scattering at fixed-angle, the t-dependence of proton–proton scattering at large \(s>> t\), and Compton scattering at fixed t. The model appears to be the only comprehensive mechanism consistent with all experimental information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S.J. Brodsky, G.R. Farrar, Phys. Rev. D 11, 1309 (1975)

    Article  ADS  Google Scholar 

  2. G.R. Farrar, D.R. Jackson, Phys. Rev. Lett. 43, 246 (1979)

    Article  ADS  Google Scholar 

  3. G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980)

    Article  ADS  Google Scholar 

  4. A.V. Efremov, A.V. Radyushkin, Theor. Math. Phys. 42, 97 (1980)

    Article  Google Scholar 

  5. A.V. Efremov, A.V. Radyushkin, Phys. Lett. B94, 245 (1980)

    Article  ADS  Google Scholar 

  6. S.J. Brodsky, G.P. Lepage, Phys. Rev. D 24, 2848 (1981)

    Article  ADS  Google Scholar 

  7. P.V. Landshoff, Phys. Rev. D 10, 1024 (1974)

    Article  ADS  Google Scholar 

  8. P.D.B. Collins, F.D. Gault, A. Martin, Nucl. Phys. B 85, 141 (1975)

    Article  ADS  Google Scholar 

  9. A. Donnachie, P.V. Landshoff, Z. Phys. C 2, 55 (1979)

    Article  ADS  Google Scholar 

  10. P.D.B. Collins, F.D. Gault, Phys. Lett. B 112, 255 (1982)

    Article  ADS  Google Scholar 

  11. A. Danagoulian et al., [Hall A Collaboration], Phys. Rev. Lett. 98, 152001 (2007)

  12. N. Isgur, C. Llewelyn-Smith, Phys. Rev. Lett. 52, 1080 (1984)

    Article  ADS  Google Scholar 

  13. P. Jain, B. Pire, J.P. Ralston, Phys. Rep. 271, 67 (1996)

    Article  ADS  Google Scholar 

  14. S. Dagaonkar, P. Jain, J.P. Ralston, EPJC 74, 3000 (2014)

    Article  ADS  Google Scholar 

  15. S. Dagaonkar, P. Jain, J.P. Ralston, EPJC 76, 368 (2016)

    Article  ADS  Google Scholar 

  16. S. Dagaonkar, arXiv:1611.00147

  17. R.P. Feynman, Phys. Rev. Lett. 23, 1415 (1969)

    Article  ADS  Google Scholar 

  18. S.D. Drell, T.-M. Yan, Phys. Rev. Lett. 24, 181 (1970)

    Article  ADS  Google Scholar 

  19. G.B. West, Phys. Rev. Lett. 24, 1206 (1970)

    Article  ADS  Google Scholar 

  20. S.J. Brodsky, C.-R. Ji, M. Sawicki, Phys. Rev. D 32, 1530 (1985)

    Article  ADS  Google Scholar 

  21. M. Sawicki, Phys. Rev. D 32, 2666 (1985)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pankaj Jain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dagaonkar, S., Jain, P. & Ralston, J.P. Endpoint Model of Exclusive Processes. Few-Body Syst 59, 71 (2018). https://doi.org/10.1007/s00601-018-1395-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-018-1395-6

Navigation