Advertisement

Few-Body Systems

, 59:48 | Cite as

Entanglement in Spatial Adiabatic Processes for Interacting Atoms

  • Albert Benseny
  • Irina Reshodko
  • Thomas Busch
Open Access
Article
Part of the following topical collections:
  1. Critical Stability 2017

Abstract

We study the dynamics of the non-classical correlations for few atom systems in the presence of strong interactions for a number of recently developed adiabatic state preparation protocols. We show that entanglement can be created in a controlled fashion and can be attributed to two distinct sources, the atom–atom interaction and the distribution of atoms among different traps.

Notes

Acknowledgements

This work was supported by the Okinawa Institute of Science and Technology Graduate University.

References

  1. 1.
    L. Amico, R. Fazio, A. Osterloh, V. Vedral, Entanglement in many-body systems. Rev. Mod. Phys. 80, 517 (2008)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2011)zbMATHGoogle Scholar
  3. 3.
    T. Monz, P. Schindler, J.T. Barreiro, M. Chwalla, D. Nigg, W.A. Coish, M. Harlander, W. Hänsel, M. Hennrich, R. Blatt, 14-qubit entanglement: creation and coherence. Phys. Rev. Lett. 106, 130506 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    X.-C. Yao, T.-X. Wang, P. Xu, H. Lu, G.-S. Pan, X.-H. Bao, C.-Z. Peng, C.-Y. Lu, Y.-A. Chen, J.-W. Pan, Observation of eight-photon entanglement. Nat. Photonics 6, 225 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    A.N. Wenz, G. Zürn, S. Murmann, I. Brouzos, T. Lompe, S. Jochim, From few to many: observing the formation of a Fermi sea one atom at a time. Science 342, 457 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    S. Murmann, A. Bergschneider, V.M. Klinkhamer, G. Zürn, T. Lompe, S. Jochim, Two fermions in a double well: exploring a fundamental building block of the hubbard model. Phys. Rev. Lett. 114, 080402 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    S. Kokkelmans, Feshbach Resonances in Ultracold Gases, in Quantum Gas Experiments, vol. 4 (Imperial College Press, London, 2014), p. 63Google Scholar
  8. 8.
    R. Menchon-Enrich, A. Benseny, V. Ahufinger, A.D. Greentree, Th Busch, J. Mompart, Spatial adiabatic passage: a review of recent progress. Rep. Prog. Phys. 79, 074401 (2016)ADSCrossRefGoogle Scholar
  9. 9.
    A. Benseny, J. Gillet, Th Busch, Spatial adiabatic passage via interaction-induced band separation. Phys. Rev. A 93, 033629 (2016)ADSCrossRefGoogle Scholar
  10. 10.
    I. Reshodko, A. Benseny, Th Busch, Robust boson dispenser: quantum state preparation in interacting many-particle systems. Phys. Rev. A 96, 023606 (2017)ADSCrossRefGoogle Scholar
  11. 11.
    M. Olshanii, Atomic scattering in the presence of an external confinement and a gas of impenetrable bosons. Phys. Rev. Lett. 81, 938 (1998)ADSCrossRefGoogle Scholar
  12. 12.
    Th Busch, B.-G. Englert, K. Rzazewski, M. Wilkens, Two cold atoms in a harmonic trap. Found. Phys. 28, 549 (1998)CrossRefGoogle Scholar
  13. 13.
    S. Taie, T. Ichinose, H. Ozawa, Y. Takahashi, Spatial adiabatic passage of massive quantum particles, arXiv:1708.01100 [cond-mat.quant-gas]
  14. 14.
    K. Eckert, M. Lewenstein, R. Corbalán, G. Birkl, W. Ertmer, J. Mompart, Three-level atom optics via the tunneling interaction. Phys. Rev. A 70, 023606 (2014)ADSCrossRefGoogle Scholar
  15. 15.
    N.V. Vitanov, A.A. Rangelov, B.W. Shore, K. Bergmann, Stimulated Raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017)ADSCrossRefGoogle Scholar
  16. 16.
    I. Afek, O. Ambar, Y. Silberberg, High-NOON states by mixing quantum and classical light. Science 328, 879 (2010)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    H. Lee, P. Kok, J.P. Dowling, A quantum Rosetta stone for interferometry. J. Mod. Opt. 49, 2325 (2002)ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    K. Winkler, G. Thalhammer, F. Lang, R. Grimm, J. Hecker Denschlag, A.J. Daley, A. Kantian, H.P. Büchler, P. Zoller, Repulsively bound atom pairs in an optical lattice. Nature 441, 853 (2006)ADSCrossRefGoogle Scholar
  19. 19.
    G. Mazzarella, S.M. Giampaolo, F. Illuminati, Extended Bose–Hubbard model of interacting bosonic atoms in optical lattices: from superfluidity to density waves. Phys. Rev. A 73, 013625 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    U. Bissbort, F. Deuretzbacher, W. Hofstetter, Effective multibody-induced tunnelling and interactions in the Bose–Hubbard model of the lowest dressed band of an optical lattice. Phys. Rev. A 86, 023617 (2012)ADSCrossRefGoogle Scholar
  21. 21.
    D.-S. Lühmann, O. Jürgensen, K. Sengstock, Multi-orbital and density-induced tunnelling of bosons in optical lattices. New J. Phys. 14, 033021 (2012)CrossRefGoogle Scholar
  22. 22.
    M. Maik, P. Hauke, O. Dutta, M. Lewenstein, J. Zakrzewski, Density-dependent tunnelling in the extended Bose–Hubbard model. New J. Phys. 15, 113041 (2013)ADSCrossRefGoogle Scholar
  23. 23.
    W. Ganczarek, M. Modugno, G. Pettini, J. Zakrzewski, Wannier functions for one-dimensional \(s\)-\(p\) optical superlattices. Phys. Rev. A 90, 033621 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    M. Kremer, R. Sachdeva, A. Benseny, Th Busch, Interaction-induced effects on Bose–Hubbard parameters. Phys. Rev. A 96, 063611 (2017)ADSCrossRefGoogle Scholar
  25. 25.
    D.S. Murphy, J.F. McCann, J. Goold, Th Busch, Boson pairs in a one-dimensional split trap. Phys. Rev. A 76, 053616 (2007)ADSCrossRefGoogle Scholar
  26. 26.
    T. Fogarty, Th Busch, J. Goold, M. Paternostro, Non-locality of two ultracold trapped atoms New. J. Phys. 13, 023016 (2011)Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  1. 1.Quantum Systems UnitOkinawa Institute of Science and Technology Graduate UniversityOnnaJapan

Personalised recommendations