Few-Body Systems

, 59:44 | Cite as

Relativistic Oscillators in Generalized Snyder Model

Article
  • 16 Downloads

Abstract

We present an exact solution of one-dimensional Klein–Gordon and Dirac oscillators subjected to the uniform electric field with Snyder–de Sitter model in the momentum space, known in quantum mechanics by the stark effect. The energy eigenvalues and eigenfunctions are determined for both cases. The pure relativistic oscillator is obtained as particular case by taking the limit when the electric field vanishes. We also have determined some formulas of thermodynamics properties for relativistic oscillators within this framework.

References

  1. 1.
    H. Falomir, J. Gamboa, M. Loewe, M. Nieto, Graphene and non-Abelian quantization. J. Phys. A Math. Theor. 45, 135308 (2012)ADSMathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    C. Quesne, Quadratic algebra approach to an exactly solvable position-dependent mass Schrödinger equation in two dimensions. SIGMA 3, 067 (2007)MATHGoogle Scholar
  3. 3.
    I.O. Vakarchuk, G. Panochho, The effective mass of an impurity atom in the Bose liquid with a deformed Heisenberg Algebra. Ukr. J. Phys. 62, 123 (2017)CrossRefGoogle Scholar
  4. 4.
    A. Kempf, Uncertainty relation in quantum mechanics with quantum group symmetry. J. Math. Phys. 35, 4483 (1994)ADSMathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    A. Kempf, G. Mangano, R.B. Mann, Hilbert space representation of the minimal length uncertainty relation. Phys. Rev. D 52, 1108 (1995)ADSMathSciNetCrossRefGoogle Scholar
  6. 6.
    S. Mignemi, Classical and quantum mechanics of the nonrelativistic Snyder model in curved space. Class. Quantum Grav. 29, 215019 (2012)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    S. Mignemi, R. Strajn, Quantum mechanics on a curved Snyder space. Adv. High Energy Phys. 2016, 1328284 (2016)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    M.M. Stetsko, Dirac oscillator and nonrelativistic Snyder–de Sitter algebra. J. Math. Phys. 56, 012101 (2015)ADSMathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    M. Merad, M. Hadj, Moussa, Exact solution of Klein–Gordon and Dirac equations with Snyder-de Sitter algebra. J. Few-Body Syst. 59, 5 (2018).  https://doi.org/10.1007/s00601-017-1326-y ADSCrossRefGoogle Scholar
  10. 10.
    H.S. Snyder, Quantized space-time. Phys. Rev. 71, 38 (1947)ADSMathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    S. Mignemi, Classical and quantum mechanics of the nonrelativistic Snyder model. Phys. Rev. D 84, 025021 (2011)ADSGoogle Scholar
  12. 12.
    C. Leiva, Harmonic oscillator in Snyder space: the classical case and the quantum case. J. Pram. Phys. 74, 172 (2010)Google Scholar
  13. 13.
    C. Leiva, J. Saavedra, J.R. Villanueva, The Kepler problem in the Snyder space. J. Pram. Phys. 80, 945 (2013)CrossRefGoogle Scholar
  14. 14.
    C.B. Compean, M. Kirchbach, The trigonometric Rosen–Morse potential in the supersymmetric quantum mechanics and its exact solutions. J. Phys. A Math. Gen. 39, 549–552 (2005)MATHGoogle Scholar
  15. 15.
    A.P. Raposo, H.J. Weber, D.E. Alvarez-Castillo, M. Kirchbach, Romanovski polynomials in selected physics problems. J. Centr. Eur. Phys. 5, 259–279 (2007)Google Scholar
  16. 16.
    M. Moshinsky, A. Szczepaniak, The dirac oscillator. J. Phys. A22, L817 (1989)ADSMathSciNetGoogle Scholar
  17. 17.
    D. Ito, K. Mori, E. Carriere, An example of dynamical systems with linear trajectory. Nuovo Cim. 51A, 1119 (1967)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Département des Sciences de la Matière, Faculté des Sciences ExactesUniversité de Oum El BouaghiOum El BouaghiAlgeria

Personalised recommendations