Few-Body Systems

, 59:17 | Cite as

Few-Body Techniques Using Coordinate Space for Bound and Continuum States

  • E. Garrido
Part of the following topical collections:
  1. Critical Stability 2017


These notes are a short summary of a set of lectures given within the frame of the “Critical Stability of Quantum Few-Body Systems" International School held in the Max Planck Institute for the Physics of Complex Systems (Dresden). The main goal of the lectures has been to provide the basic ingredients for the description of few-body systems in coordinate space. The hyperspherical harmonic and the adiabatic expansion methods are introduced in detail, and subsequently used to describe bound and continuum states. The expressions for the cross sections and reaction rates for three-body processes are derived. The case of resonant scattering and the complex scaling method as a tool to obtain the resonance energy and width is also introduced.


  1. 1.
    M.F. de la Ripelle, The potential harmonic expansion method. Ann. Phys. 147, 281 (1983)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    M. Gattobigio, A. Kievsky, M. Viviani, Nonsymmetrized hyperspherical harmonic basis for an \(A\)-body system. Phys. Rev. C 83, 024001 (2011)ADSCrossRefGoogle Scholar
  3. 3.
    J. Raynal, J. Revai, Transformation coefficients in the hyperspherical approach to the three-body problem. Nuovo Cimento A 68, 612 (1970)ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    M. Viviani, Transformation coefficients of hyperspherical harmonic functions of an \(A\)-body system. Few Body Syst. 25, 177 (1998)ADSCrossRefGoogle Scholar
  5. 5.
    E. Nielsen, D.V. Fedorov, A.S. Jensen, E. Garrido, The three-body problem with short-range interactions. Phys. Rep. 347, 373 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    D.V. Fedorov, A.S. Jensen, Efimov effect in coordinate space Faddeev equations. Phys. Rev. Lett. 71, 4103 (1993)ADSCrossRefGoogle Scholar
  7. 7.
    A.S. Jensen, E. Garrido, D.V. Fedorov, Three-body systems with square-well potentials in \(L = 0\) states. Few Body Syst. 236, 193 (1997)ADSMathSciNetCrossRefGoogle Scholar
  8. 8.
    M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publ., Inc., New York, 1965)zbMATHGoogle Scholar
  9. 9.
    D.V. Fedorov, A.S. Jensen, Regularization of a three-body problem with zero-range potentials. J. Phys. A 3, 6003 (2001)ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    M. Mikkelsen, A.S. Jensen, D.V. Fedorov, N.T. Zinner, Three-body recombination of two-component cold atomic gases into deep dimers in an optical model. J. Phys. B 48, 085301 (2015)ADSCrossRefGoogle Scholar
  11. 11.
    E. Garrido, C. Romero-Redondo, A. Kievsky, M. Viviani, Integral relations and the adiabatic expansion method for \(1+2\) reactions above the breakup threshold: helium trimers with soft-core potentials. Phys. Rev. A 86, 052709 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    E. Garrido, A. Kievsky, M. Viviani, Breakup of three particles within the adiabatic expansion method. Phys. Rev. C 90, 014607 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    P. Barletta, A. Kievsky, Three-nucleon continuum by means of the hyperspherical adiabatic method. Few Body Syst. 45, 25 (2008)ADSCrossRefGoogle Scholar
  14. 14.
    H. Suno, B.D. Esry, Adiabatic hyperspherical study of triatomic helium systems. Phys. Rev. A 78, 062701 (2008)ADSCrossRefGoogle Scholar
  15. 15.
    P. Barletta, C. Romero-Redondo, A. Kievsky, M. Viviani, E. Garrido, Integral relations for three-body continuum states with the adiabatic expansion. Phys. Rev. Lett. 103, 090402 (2009)ADSCrossRefGoogle Scholar
  16. 16.
    C. Romero-Redondo, E. Garrido, P. Barletta, A. Kievsky, M. Viviani, General integral relations for the description of scattering states using the hyperspherical adiabatic basis. Phys. Rev. A 83, 022705 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    W.A. Fowler, G.R. Caughlan, B.A. Zimmerman, Thermonuclear reaction rates. Annu. Rev. Astron. Astrophys. 5, 525 (1967)ADSCrossRefGoogle Scholar
  18. 18.
    E. Balslev, J.M. Combes, Spectral properties of many-body Schrödinger operators with dilatation–analytic interactions. Commun. Math. Phys. 22, 280 (1971)ADSCrossRefzbMATHGoogle Scholar
  19. 19.
    E. Garrido, R. de Diego, D.V. Fedorov, A.S. Jensen, Direct and sequential radiative three-body reaction rates at low temperatures. Eur. Phys. J. A 47, 102 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    K. Nomoto, F.K. Thielemann, S. Miyajim, The triple-alpha-reaction at low temperatures in accreting white dwarfs and neutron stars. Astron. Astrophys. 149, 239 (1985)ADSGoogle Scholar
  21. 21.
    C. Angulo et al., A compilation of charged-particle induced thermonuclear reaction rates. Nucl. Phys. A 656, 3 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    J. Casal, M. Rodríguez-Gallardo, J.M. Arias, I.J. Thompson, Astrophysical reaction rate for \(^9\)Be formation within a three-body approach. Phys. Rev. C 90, 044304 (2014)ADSCrossRefGoogle Scholar
  23. 23.
    M. Viviani, A. Kievsky, S.Y. Rosati, Calculation of the \(\alpha \)-particle within the hyperspherical harmonic basis. Phys. Rev. C 71, 024006 (2005)ADSCrossRefGoogle Scholar
  24. 24.
    E. Garrido, D.V. Fedorov, A.S. Jensen, The \(^{10}\)Li spectrum and the \(^{11}\)Li properties. Nucl. Phys. A 700, 117 (2002)ADSCrossRefGoogle Scholar
  25. 25.
    E. Garrido, E. Moya de Guerra, Electron scattering on two-neutron halo nuclei: the case of \(^6\)He. Nucl. Phys. A 650, 387 (1999)ADSCrossRefGoogle Scholar
  26. 26.
    C. Romero-Redondo, E. Garrido, D.V. Fedorov, A.S. Jensen, Three-body structure of low-lying \(^{12}\)Be states. Phys. Rev. C 77, 054313 (2008)ADSCrossRefGoogle Scholar
  27. 27.
    E. Garrido, D.V. Fedorov, A.S. Jensen, Three-body structure of the low-lying \(^{17}\)Ne-states. Nucl. Phys. A 733, 85 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    A. Kievsky, E. Garrido, C. Romero-Redondo, P. Barletta, The helium trimer with soft-core potentials. Few Body Syst. 51, 259 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    R. de Diego, E. Garrido, D.V. Fedorov, A.S. Jensen, Neutron-\(^3\)H potentials and the \(^5\)H-properties. Nucl. Phys. A 786, 71 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    R. Álvarez Rodríguez, A.S. Jensen, E. Garrido, D.V. Fedorov, Structure and three-body decay of \(^9\)Be resonances. Phys. Rev. C 82, 034001 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    E. Garrido, D.V. Fedorov, A.S. Jensen, Above threshold s-wave resonances illustrated by the states in \(^9\)Be and \(^9\)B. Phys. Lett. B 684, 132 (2010)ADSCrossRefGoogle Scholar
  32. 32.
    E. Garrido, D.V. Fedorov, A.S. Jensen, Dipole excited states in \(^{11}\)Li with complex scaling. Nucl. Phys. A 708, 277 (2002)ADSCrossRefGoogle Scholar
  33. 33.
    R. Álvarez Rodríguez, E. Garrido, A.S. Jensen, D.V. Fedorov, H.O.U. Fynbo, Structure of low-lying \(^{12}\)C resonances. Eur. Phys. J A 31, 303 (2007)ADSCrossRefGoogle Scholar
  34. 34.
    R. de Diego, E. Garrido, D.V. Fedorov, A.S. Jensen, Relative production rates of \(^6\)He, \(^9\)Be, \(^{12}\)C in astrophysical environments. Europhys. Lett. 90, 52001 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    R. Álvarez Rodríguez, H.O.U. Fynbo, A.S. Jensen, E. Garrido, Distinction between sequential and direct three-body decays. Phys. Rev. Lett. 100, 192501 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Estructura de la MateriaCSICMadridSpain

Personalised recommendations