Few-Body Systems

, 59:21 | Cite as

The MAID Legacy and Future

Article
  • 9 Downloads
Part of the following topical collections:
  1. NSTAR 2017

Abstract

The MAID project is a collection of theoretical models for pseudoscalar meson photo- and electroproduction from nucleons. It is online available and produces results in real time calculations. In addition to kinematical variables also model parameters, especially for baryon resonances, can be online changed and investigated. Over 20 years MAID has become quite popular and the MAID web pages have been called more than 7.7 million times.

Notes

Acknowledgements

From the beginning, the MAID project was heavily supported by Prof. Dieter Drechsel in Mainz, who also gave a lot of encouragement for the development and for applications. A very big part of the programs was developed by Sabit Kamalov from Dubna. In addition we are also grateful to the contributions of Olaf Hanstein, Marc Vanderhaeghen, Victor Kashevarov, Stefan Scherer and Marius Hilt from Mainz, Shin Nan Yang and Wen Tai Chiang from Taipei, Terry Mart from Depok (Indonesia), Cornelius Bennhold from George Washington University and Alexander Fix from Tomsk. The MAID project was supported by the Deutsche Forschungsgemeinschaft (SFB 201 and 1044).

References

  1. 1.
    L. Tiator, D. Drechsel, S.S. Kamalov, M. Vanderhaeghen, Eur. Phys. J. Special Topics 198, 141 (2011)ADSCrossRefGoogle Scholar
  2. 2.
    I.G. Aznauryan, V.D. Burkert, Prog. Part. Nucl. Phys. 67, 1 (2012)ADSCrossRefGoogle Scholar
  3. 3.
    D. Drechsel, O. Hanstein, S.S. Kamalov, L. Tiator, Nucl. Phys. A 645, 145 (1999)ADSCrossRefGoogle Scholar
  4. 4.
    D. Drechsel, S.S. Kamalov, L. Tiator, Eur. Phys. J. A 34, 69 (2007). http://www.kph.uni-mainz.de/MAID/
  5. 5.
    S.S. Kamalov, S.N. Yang, D. Drechsel, O. Hanstein, L. Tiator, Phys. Rev. C 64, 032201 (2001)ADSCrossRefGoogle Scholar
  6. 6.
    T. Mart, C. Bennhold, Phys. Rev. C 61, 012201 (2000)ADSCrossRefGoogle Scholar
  7. 7.
    W.T. Chiang, S.N. Yang, L. Tiator, D. Drechsel, Nucl. Phys. A 700, 429 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    S. Clymton, T. Mart, Phys. Rev. D 96(5), 054004 (2017)ADSCrossRefGoogle Scholar
  9. 9.
    W.T. Chiang, S.N. Yang, L. Tiator, M. Vanderhaeghen, D. Drechsel, Phys. Rev. C 68, 045202 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    A. Fix, H. Arenhövel, Eur. Phys. J. A 25, 115 (2005)CrossRefGoogle Scholar
  11. 11.
    M. Hilt, B.C. Lehnhart, S. Scherer, L. Tiator, Phys. Rev. C 88, 055207 (2013)ADSCrossRefGoogle Scholar
  12. 12.
    R.A. Arndt, I.I. Strakovsky, R.L. Workman, Phys. Rev. C53, 430 (1996) (SP99 solution of the GW/SAID analysis). http://gwdac.phys.gwu.edu/
  13. 13.
    I.G. Aznauryan et al., [CLAS Collaboration], Phys. Rev. C 80, 055203 (2009)Google Scholar
  14. 14.
    S. Štajner et al., Phys. Rev. Lett. 119(2), 022001 (2017)ADSCrossRefGoogle Scholar
  15. 15.
    V.I. Mokeev et al. [CLAS Collaboration], Phys. Rev. C 86, 035203 (2012)Google Scholar
  16. 16.
    C.S. Akondi et al. [A2 at MAMI Collaboration], Phys. Rev. Lett. 113(10), 102001 (2014)Google Scholar
  17. 17.
    V.L. Kashevarov et al. [A2 Collaboration], Phys. Rev. Lett. 118, no. 21, 212001 (2017)Google Scholar
  18. 18.
    V.L. Kashevarov, L. Tiator, M. Ostrick, Bled Workshops Phys. 16, 9 (2015)Google Scholar
  19. 19.
    V.L. Kashevarov, M. Ostrick, L. Tiator, Phys. Rev. C 96(3), 035207 (2017)ADSCrossRefGoogle Scholar
  20. 20.
    C. Patrignani et al. (Particle Data Group), Chin. Phys. C 40, 100001 (2016)Google Scholar
  21. 21.
    V. Crede et al., Phys. Rev. C 80, 055202 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    M. Williams et al., Phys. Rev. C 80, 045213 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    A. Švarc, M. Hadžimehmedovic, H. Osmanovic, J. Stahov, L. Tiator, R.L. Workman, Phys. Rev. C 89(6), 065208 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    L. Tiator, M. Döring, R.L. Workman, M. Hadžimehmedovic, H. Osmanovic, R. Omerovic, J. Stahov, A. Švarc, Phys. Rev. C 94(6), 065204 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    L. Tiator, M. Vanderhaeghen, Phys. Lett. B 672, 344 (2009)ADSCrossRefGoogle Scholar
  26. 26.
    L. Tiator, R.L. Workman, Y. Wunderlich, H. Haberzettl, Phys. Rev. C 96(2), 025210 (2017)ADSCrossRefGoogle Scholar
  27. 27.
    B. Pasquini, D. Drechsel, L. Tiator, Eur. Phys. J. A 23, 279 (2005)ADSCrossRefGoogle Scholar
  28. 28.
    B. Pasquini, D. Drechsel, L. Tiator, Eur. Phys. J. A 27, 231 (2006)ADSCrossRefGoogle Scholar
  29. 29.
    B. Pasquini, D. Drechsel, L. Tiator, Eur. Phys. J. A 34, 387 (2007)ADSCrossRefGoogle Scholar
  30. 30.
    D. Drechsel, B. Pasquini, M. Vanderhaeghen, Phys. Rep. 378, 99 (2003)ADSCrossRefGoogle Scholar
  31. 31.
    D. Drechsel, L. Tiator, Ann. Rev. Nucl. Part. Sci. 54, 69 (2004)ADSCrossRefGoogle Scholar
  32. 32.
    M. Gorchtein, C. Lorce, B. Pasquini, M. Vanderhaeghen, Phys. Rev. Lett. 104, 112001 (2010)ADSCrossRefGoogle Scholar
  33. 33.
    J. Gasser, M. Hoferichter, H. Leutwyler, A. Rusetsky, Eur. Phys. J. C 75(8), 375 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    O. Tomalak, B. Pasquini, M. Vanderhaeghen, Phys. Rev. D 96(9), 096001 (2017)ADSCrossRefGoogle Scholar
  35. 35.
    P. Adlarson et al. [A2 Collaboration], Phys. Rev. C 92(2), 024617 (2015)Google Scholar
  36. 36.
    A.V. Anisovich et al., Eur. Phys. J. A 52(9), 284 (2016)ADSCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Universität MainzMainzGermany

Personalised recommendations