Advertisement

Few-Body Systems

, 59:25 | Cite as

Supersymmetric Properties of Hadron Physics from Light-Front Holography and Superconformal Algebra and other Advances in Light-Front QCD

  • Stanley J. Brodsky
Article
  • 48 Downloads
Part of the following topical collections:
  1. Light Cone 2017

Abstract

Light-front holography, together with superconformal algebra, have provided new insights into the physics of color confinement and the spectroscopy and dynamics of hadrons. As shown by de Alfaro, Fubini and Furlan, a mass scale can appear in the equations of motion without affecting the conformal invariance of the action if one adds a term to the Hamiltonian proportional to the dilatation operator or the special conformal operator. If one applies the procedure of de Alfaro et al. to the frame-independent light-front Hamiltonian, it leads uniquely to a confining \(q \bar{q}\) potential \(\kappa ^4 \zeta ^2\), where \(\zeta ^2\) is the light-front radial variable related in momentum space to the \(q \bar{q}\) invariant mass. The same result, including spin terms, is obtained using light-front holography—the duality between the front form and AdS\(_5\), the space of isometries of the conformal group—if one modifies the action of AdS\(_5\) by the dilaton \(e^{\kappa ^2 z^2}\) in the fifth dimension z. When one generalizes this procedure using superconformal algebra, the resulting light-front eigensolutions lead to a a unified Regge spectroscopy of meson, baryon, and tetraquarks, including supersymmetric relations between their masses and their wavefunctions. One also predicts hadronic light-front wavefunctions and observables such as structure functions, transverse momentum distributions, and the distribution amplitudes. The mass scale \(\kappa \) underlying confinement and hadron masses can be connected to the parameter \(\varLambda _{\overline{MS}}\) in the QCD running coupling by matching the nonperturbative dynamics to the perturbative QCD regime. The result is an effective coupling \(\alpha _s(Q^2)\) defined at all momenta. The matching of the high and low momentum transfer regimes determines a scale \(Q_0\) which sets the interface between perturbative and nonperturbative hadron dynamics. I also discuss a number of applications of light-front phenomenology.

Notes

Acknowledgements

Presented at Light-Cone 2017, Frontiers in Light Front Hadron Physics: Theory and Experiment September 18–22, 2017, Mumbai, Maharashtra, India. I thank Prof. Anuradha Misra and her colleagues for organizing an outstanding conference at the University of Mumbai. The results presented here are based on collaborations and discussions with Kelly Chiu, Alexandre Deur, Guy de Téramond, Guenter Dosch, Marina Nielsen, Fred Goldhaber, Paul Hoyer, Dae Sung Hwang, Rich Lebed, Simonetta Liuti, Cedric Lorce, Matin Mojaza, Michael Peskin, Craig Roberts, Ivan Schmidt, and Xing-Gang Wu. This research was supported by the Department of Energy, contract DE–AC02–76SF00515. SLAC-PUB-17202.

References

  1. 1.
    V. de Alfaro, S. Fubini, G. Furlan, Nuovo Cim. A 34, 569 (1976)ADSCrossRefGoogle Scholar
  2. 2.
    S.J. Brodsky, G.F. de Téramond, H.G. Dosch, Phys. Lett. B 729, 3 (2014).  https://doi.org/10.1016/j.physletb.2013.12.044. [arXiv:1302.4105 [hep-th]]ADSCrossRefGoogle Scholar
  3. 3.
    G.F. de Téramond, S.J. Brodsky, Phys. Rev. Lett. 102, 081601 (2009).  https://doi.org/10.1103/PhysRevLett.102.081601. [arXiv:0809.4899 [hep-ph]]ADSCrossRefGoogle Scholar
  4. 4.
    G.F. de Téramond, H.G. Dosch, S.J. Brodsky, Phys. Rev. D 87(7), 075005 (2013).  https://doi.org/10.1103/PhysRevD.87.075005. [arXiv:1301.1651 [hep-ph]]ADSCrossRefGoogle Scholar
  5. 5.
    G.F. de Téramond, S.J. Brodsky, Nucl. Phys. Proc. Suppl. 199, 89 (2010).  https://doi.org/10.1016/j.nuclphysbps.2010.02.010. [arXiv:0909.3900 [hep-ph]]ADSCrossRefGoogle Scholar
  6. 6.
    S.J. Brodsky, F. Guy de Tramond, Chin. Phys. C 34(9), 1229 (2010).  https://doi.org/10.1088/1674-1137/34/9/015. [arXiv:1001.1978 [hep-ph]]CrossRefGoogle Scholar
  7. 7.
    G.F. de Téramond, S.J. Brodsky, H.G. Dosch, EPJ Web Conf. 73, 01014 (2014).  https://doi.org/10.1051/epjconf/20147301014. [arXiv:1401.5531 [hep-ph]]CrossRefGoogle Scholar
  8. 8.
    S.J. Brodsky, G.F. de Téramond, H.G. Dosch, J. Erlich, Phys. Rep. 584, 1 (2015).  https://doi.org/10.1016/j.physrep.2015.05.001. [arXiv:1407.8131 [hep-ph]]ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    S.J. Brodsky, A. Deur, G.F. de Téramond, H.G. Dosch, Int. J. Mod. Phys. Conf. Ser. 39, 1560081 (2015).  https://doi.org/10.1142/S2010194515600812. [arXiv:1510.01011 [hep-ph]]CrossRefGoogle Scholar
  10. 10.
    A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Phys. Rev. Lett. 104, 112002 (2010).  https://doi.org/10.1103/PhysRevLett.104.112002. [arXiv:0911.4742 [hep-ph]]ADSCrossRefGoogle Scholar
  11. 11.
    S.J. Brodsky, F.G. Cao, G.F. de Téramond, Phys. Rev. D 84, 075012 (2011).  https://doi.org/10.1103/PhysRevD.84.075012. [arXiv:1105.3999 [hep-ph]]ADSCrossRefGoogle Scholar
  12. 12.
    J.R. Forshaw, R. Sandapen, Phys. Rev. Lett. 109, 081601 (2012).  https://doi.org/10.1103/PhysRevLett.109.081601. [arXiv:1203.6088 [hep-ph]]ADSCrossRefGoogle Scholar
  13. 13.
    J.P. Vary, X. Zhao, A. Ilderton, H. Honkanen, P. Maris, S.J. Brodsky, Nucl. Phys. Proc. Suppl. 251–252, 10 (2014).  https://doi.org/10.1016/j.nuclphysbps.2014.04.002. [arXiv:1406.1838 [nucl-th]]CrossRefGoogle Scholar
  14. 14.
    S.J. Brodsky et al. arXiv:1502.05728 [hep-ph]
  15. 15.
    R. Haag, J.T. Lopuszanski, M. Sohnius, Nucl. Phys. B 88, 257 (1975).  https://doi.org/10.1016/0550-3213(75)90279-5 ADSCrossRefGoogle Scholar
  16. 16.
    S. Fubini, E. Rabinovici, Nucl. Phys. B 245, 17 (1984).  https://doi.org/10.1016/0550-3213(84)90422-X ADSCrossRefGoogle Scholar
  17. 17.
    S.J. Brodsky, S.D. Drell, Phys. Rev. D 22, 2236 (1980).  https://doi.org/10.1103/PhysRevD.22.2236 ADSCrossRefGoogle Scholar
  18. 18.
    S.J. Brodsky, D.S. Hwang, I. Schmidt, Phys. Lett. B 530, 99 (2002).  https://doi.org/10.1016/S0370-2693(02)01320-5. [arXiv:hep-ph/0201296]ADSCrossRefGoogle Scholar
  19. 19.
    G.F. de Téramond, H.G. Dosch, S.J. Brodsky, Phys. Rev. D 91(4), 045040 (2015).  https://doi.org/10.1103/PhysRevD.91.045040. [arXiv:1411.5243 [hep-ph]]ADSCrossRefGoogle Scholar
  20. 20.
    H.G. Dosch, G.F. de Téramond, S.J. Brodsky, Phys. Rev. D 91(8), 085016 (2015).  https://doi.org/10.1103/PhysRevD.91.085016. [arXiv:1501.00959 [hep-th]]ADSCrossRefGoogle Scholar
  21. 21.
    H.G. Dosch, G.F. de Téramond, S.J. Brodsky, Phys. Rev. D 92(7), 074010 (2015).  https://doi.org/10.1103/PhysRevD.92.074010. [arXiv:1504.05112 [hep-ph]]ADSCrossRefGoogle Scholar
  22. 22.
    T. Liu, B.Q. Ma, Phys. Rev. D 92(9), 096003 (2015).  https://doi.org/10.1103/PhysRevD.92.096003. [arXiv:1510.07783 [hep-ph]]ADSCrossRefGoogle Scholar
  23. 23.
    S.J. Brodsky, R.F. Lebed, Phys. Rev. D 91, 114025 (2015).  https://doi.org/10.1103/PhysRevD.91.114025. [arXiv:1505.00803 [hep-ph]]ADSCrossRefGoogle Scholar
  24. 24.
    R.S. Sufian, G.F. de Téramond, S.J. Brodsky, A. Deur, H.G. Dosch, Phys. Rev. D 95(1), 014011 (2017).  https://doi.org/10.1103/PhysRevD.95.014011. [arXiv:1609.06688 [hep-ph]]ADSCrossRefGoogle Scholar
  25. 25.
    P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949).  https://doi.org/10.1103/RevModPhys.21.392 ADSCrossRefGoogle Scholar
  26. 26.
    S.J. Brodsky, H.C. Pauli, S.S. Pinsky, Phys. Rep. 301, 299 (1998).  https://doi.org/10.1016/S0370-1573(97)00089-6. [arXiv:hep-ph/9705477]ADSMathSciNetCrossRefGoogle Scholar
  27. 27.
  28. 28.
    R. Penrose, Proc. Camb. Philos. Soc. 55, 137 (1959).  https://doi.org/10.1017/S0305004100033776 ADSCrossRefGoogle Scholar
  29. 29.
    G. Grunberg, Phys. Lett. 95B, 70 (1980) Erratum: [Phys. Lett. 110B, 501 (1982)].  https://doi.org/10.1016/0370-2693(80)90402-5
  30. 30.
    S.J. Brodsky, H.J. Lu, Phys. Rev. D 51, 3652 (1995).  https://doi.org/10.1103/PhysRevD.51.3652. [arXiv:hep-ph/9405218]ADSCrossRefGoogle Scholar
  31. 31.
    S.J. Brodsky, G.F. de Téramond, A. Deur, Phys. Rev. D 81, 096010 (2010).  https://doi.org/10.1103/PhysRevD.81.096010. [arXiv:1002.3948 [hep-ph]]ADSCrossRefGoogle Scholar
  32. 32.
    A. Deur, V. Burkert, J.P. Chen, W. Korsch, Phys. Lett. B 650, 244 (2007).  https://doi.org/10.1016/j.physletb.2007.05.015. [arXiv:hep-ph/0509113]ADSCrossRefGoogle Scholar
  33. 33.
    A. Deur, S.J. Brodsky, G.F. de Téramond, Phys. Lett. B 750, 528 (2015).  https://doi.org/10.1016/j.physletb.2015.09.063. [arXiv:1409.5488 [hep-ph]]ADSCrossRefGoogle Scholar
  34. 34.
    S.J. Brodsky, G.F. de Téramond, A. Deur, H.G. Dosch, Few Body Syst. 56(6–9), 621 (2015).  https://doi.org/10.1007/s00601-015-0964-1. [arXiv:1410.0425 [hep-ph]]ADSCrossRefGoogle Scholar
  35. 35.
    D. Binosi, C. Mezrag, J. Papavassiliou, C.D. Roberts, J. Rodriguez-Quintero, Phys. Rev. D 96(5), 054026 (2017).  https://doi.org/10.1103/PhysRevD.96.054026. [arXiv:1612.04835 [nucl-th]]ADSCrossRefGoogle Scholar
  36. 36.
    K.A. Olive et al., [Particle Data Group] Chin. Phys. C 38, 090001 (2014).  https://doi.org/10.1088/1674-1137/38/9/090001
  37. 37.
    A. Zee, Quantum field theory in a nutshell, 2nd edn. (Princeton University Press, Princeton, 2010), p. 576Google Scholar
  38. 38.
    M. Mojaza, S.J. Brodsky, X.G. Wu, Phys. Rev. Lett. 110, 192001 (2013).  https://doi.org/10.1103/PhysRevLett.110.192001. [arXiv:1212.0049 [hep-ph]]ADSCrossRefGoogle Scholar
  39. 39.
    C. Cruz-Santiago, P. Kotko, A.M. Staśto, Prog. Part. Nucl. Phys. 85, 82 (2015).  https://doi.org/10.1016/j.ppnp.2015.07.002 ADSCrossRefGoogle Scholar
  40. 40.
    K.Y.J. Chiu, S.J. Brodsky, Phys. Rev. D 95(6), 065035 (2017).  https://doi.org/10.1103/PhysRevD.95.065035. [arXiv:1702.01127 [hep-th]]ADSCrossRefGoogle Scholar
  41. 41.
    S.J. Brodsky, R. Roskies, R. Suaya, Phys. Rev. D 8, 4574 (1973).  https://doi.org/10.1103/PhysRevD.8.4574 ADSCrossRefGoogle Scholar
  42. 42.
    S.J. Brodsky, G.F. de Téramond, in Proceedings of the 18th International Conference on Particles and Nuclei (PANIC 08) 9–14 Nov 2008. Eilat, Israel (2009). CNUM: C08-11-09. arXiv:0901.0770 [hep-ph]
  43. 43.
    S.J. Brodsky, R.F. Lebed, Phys. Rev. Lett. 102, 213401 (2009).  https://doi.org/10.1103/PhysRevLett.102.213401. [arXiv:0904.2225 [hep-ph]]ADSCrossRefGoogle Scholar
  44. 44.
    A. Banburski, P. Schuster, Phys. Rev. D 86, 093007 (2012).  https://doi.org/10.1103/PhysRevD.86.093007. [arXiv:1206.3961 [hep-ph]]ADSCrossRefGoogle Scholar
  45. 45.
    S. Liuti, A. Rajan, A. Courtoy, G.R. Goldstein, J.O. Gonzalez Hernandez, Int. J. Mod. Phys. Conf. Ser. 25, 1460009 (2014).  https://doi.org/10.1142/S201019451460009X. [arXiv:1309.7029 [hep-ph]]CrossRefGoogle Scholar
  46. 46.
    C. Mondal, D. Chakrabarti, Eur. Phys. J. C 75(6), 261 (2015).  https://doi.org/10.1140/epjc/s10052-015-3486-6. [arXiv:1501.05489 [hep-ph]]ADSCrossRefGoogle Scholar
  47. 47.
    C. Lorce, B. Pasquini, M. Vanderhaeghen, JHEP 1105, 041 (2011).  https://doi.org/10.1007/JHEP05(2011)041. [arXiv:1102.4704 [hep-ph]]ADSCrossRefGoogle Scholar
  48. 48.
    S.J. Brodsky, A.I.P. Conf. Proc. 1105, 315 (2009).  https://doi.org/10.1063/1.3122202. [arXiv:0811.0875 [hep-ph]]
  49. 49.
    S.J. Brodsky, Nucl. Phys. A 827, 327C (2009).  https://doi.org/10.1016/j.nuclphysa.2009.05.068. [arXiv:0901.0781 [hep-ph]]ADSCrossRefGoogle Scholar
  50. 50.
    S.J. Brodsky, P. Hoyer, N. Marchal, S. Peigne, F. Sannino, Phys. Rev. D 65, 114025 (2002).  https://doi.org/10.1103/PhysRevD.65.114025. [arXiv:hep-ph/0104291]ADSCrossRefGoogle Scholar
  51. 51.
    S.J. Brodsky, B. Pasquini, B.W. Xiao, F. Yuan, Phys. Lett. B 687, 327 (2010).  https://doi.org/10.1016/j.physletb.2010.03.049. [arXiv:1001.1163 [hep-ph]]ADSCrossRefGoogle Scholar
  52. 52.
    S.J. Brodsky, D.S. Hwang, Y.V. Kovchegov, I. Schmidt, M.D. Sievert, Phys. Rev. D 88(1), 014032 (2013).  https://doi.org/10.1103/PhysRevD.88.014032. [arXiv:1304.5237 [hep-ph]]ADSCrossRefGoogle Scholar
  53. 53.
    S.J. Brodsky, H.J. Lu, Phys. Rev. Lett. 64, 1342 (1990).  https://doi.org/10.1103/PhysRevLett.64.1342 ADSCrossRefGoogle Scholar
  54. 54.
    S.J. Brodsky, I. Schmidt, J.J. Yang, Phys. Rev. D 70, 116003 (2004).  https://doi.org/10.1103/PhysRevD.70.116003. [arXiv:hep-ph/0409279]ADSCrossRefGoogle Scholar
  55. 55.
    I. Schienbein, J.Y. Yu, C. Keppel, J.G. Morfin, F. Olness, J.F. Owens, Phys. Rev. D 77, 054013 (2008).  https://doi.org/10.1103/PhysRevD.77.054013. [arXiv:0710.4897 [hep-ph]]ADSCrossRefGoogle Scholar
  56. 56.
    A. Zee, Mod. Phys. Lett. A 23, 1336 (2008).  https://doi.org/10.1142/S0217732308027709 ADSCrossRefGoogle Scholar
  57. 57.
    M.A. Shifman, World Sci. Lect. Notes Phys. 62, 1 (1999)CrossRefGoogle Scholar
  58. 58.
    A. Casher, L. Susskind, Phys. Rev. D 9, 436 (1974).  https://doi.org/10.1103/PhysRevD.9.436 ADSCrossRefGoogle Scholar
  59. 59.
    S.J. Brodsky, R. Shrock, Proc. Natl. Acad. Sci. 108, 45 (2011).  https://doi.org/10.1073/pnas.1010113107. [arXiv:0905.1151 [hep-th]]ADSCrossRefGoogle Scholar
  60. 60.
    S.J. Brodsky, C.D. Roberts, R. Shrock, P.C. Tandy, Phys. Rev. C 82, 022201 (2010).  https://doi.org/10.1103/PhysRevC.82.022201. [arXiv:1005.4610 [nucl-th]]ADSCrossRefGoogle Scholar
  61. 61.
    P.P. Srivastava, S.J. Brodsky, Phys. Rev. D 66, 045019 (2002).  https://doi.org/10.1103/PhysRevD.66.045019. [arXiv:hep-ph/0202141]ADSCrossRefGoogle Scholar
  62. 62.
    E.P. Verlinde, SciPost Phys. 2(3), 016 (2017).  https://doi.org/10.21468/SciPostPhys.2.3.016. [arXiv:1611.02269 [hep-th]]CrossRefGoogle Scholar
  63. 63.
    S.J. Brodsky, M. Diehl, D.S. Hwang, Nucl. Phys. B 596, 99 (2001).  https://doi.org/10.1016/S0550-3213(00)00695-7. [arXiv:hep-ph/0009254]ADSCrossRefGoogle Scholar
  64. 64.
    J.F. Gunion, S.J. Brodsky, R. Blankenbecler, Phys. Rev. D 8, 287 (1973).  https://doi.org/10.1103/PhysRevD.8.287 ADSCrossRefGoogle Scholar
  65. 65.
    S.J. Brodsky, C.R. Ji, G.P. Lepage, Phys. Rev. Lett. 51, 83 (1983).  https://doi.org/10.1103/PhysRevLett.51.83 ADSCrossRefGoogle Scholar
  66. 66.
    S.J. Brodsky, A. Sickles, Phys. Lett. B 668, 111 (2008).  https://doi.org/10.1016/j.physletb.2008.07.108. [arXiv:0804.4608 [hep-ph]]ADSCrossRefGoogle Scholar
  67. 67.
    F. Arleo, S.J. Brodsky, D.S. Hwang, A.M. Sickles, Phys. Rev. Lett. 105, 062002 (2010).  https://doi.org/10.1103/PhysRevLett.105.062002. [arXiv:0911.4604 [hep-ph]]ADSCrossRefGoogle Scholar
  68. 68.
    J.W. Cronin, H.J. Frisch, M.J. Shochet, J.P. Boymond, R. Mermod, P.A. Piroue, R.L. Sumner, Phys. Rev. D 11, 3105 (1975).  https://doi.org/10.1103/PhysRevD.11.3105 ADSCrossRefGoogle Scholar
  69. 69.
    D.W. Sivers, S.J. Brodsky, R. Blankenbecler, Phys. Rep. 23, 1 (1976).  https://doi.org/10.1016/0370-1573(76)90015-6 ADSCrossRefGoogle Scholar
  70. 70.
    S.J. Brodsky, Nucl. Part. Phys. Proc. 258–259, 23 (2015).  https://doi.org/10.1016/j.nuclphysbps.2015.01.007. [arXiv:1410.0404 [hep-ph]]CrossRefGoogle Scholar
  71. 71.
    J.D. Bjorken, S.J. Brodsky, A.S. Goldhaber, Phys. Lett. B 726, 344 (2013).  https://doi.org/10.1016/j.physletb.2013.08.066. [arXiv:1308.1435 [hep-ph]]ADSCrossRefGoogle Scholar
  72. 72.
    D. Ashery, Nucl. Phys. Proc. Suppl. 90, 67 (2000).  https://doi.org/10.1016/S0920-5632(00)00875-6 ADSCrossRefGoogle Scholar
  73. 73.
  74. 74.
    P. Wiecki, Y. Li, X. Zhao, P. Maris, J.P. Vary, Phys. Rev. D 91(10), 105009 (2015).  https://doi.org/10.1103/PhysRevD.91.105009. [arXiv:1404.6234 [nucl-th]]ADSCrossRefGoogle Scholar
  75. 75.
    M. Mojaza, S.J. Brodsky, X.G. Wu, Phys. Rev. Lett. 110, 192001 (2013).  https://doi.org/10.1103/PhysRevLett.110.192001 [arXiv:1212.0049 [hep-ph]]

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.SLAC National Accelerator LaboratoryStanford UniversityStanfordUSA

Personalised recommendations