Few-Body Systems

, 59:26 | Cite as

Nucleon Viewed as a Borromean Bound-State

  • Jorge Segovia
  • Cédric Mezrag
  • Lei Chang
  • Craig D. Roberts
Part of the following topical collections:
  1. Critical Stability 2017


We explain how the emergent phenomenon of dynamical chiral symmetry breaking ensures that Poincaré covariant analyses of the three valence–quark scattering problem in continuum quantum field theory yield a picture of the nucleon as a Borromean bound-state, in which binding arises primarily through the sum of two separate contributions. One involves aspects of the non-Abelian character of Quantum Chromodynamics that are expressed in the strong running coupling and generate tight, dynamical color-antitriplet quark–quark correlations in the scalar–isoscalar and pseudovector-isotriplet channels. This attraction is magnified by quark exchange associated with diquark breakup and reformation, which is required in order to ensure that each valence–quark participates in all diquark correlations to the complete extent allowed by its quantum numbers. Combining these effects, we arrive at a properly antisymmetrised Faddeev wave function for the nucleon and calculate, e.g. the flavor-separated versions of the Dirac and Pauli form factors and the proton’s leading-twist parton distribution amplitude. We conclude that available data and planned experiments are capable of validating the proposed picture.



Work supported by: European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Grant Agreement No. 665919; Spanish MINECO’s Juan de la Cierva-Incorporación programme with Grant Agreement No. IJCI-2016-30028; Spanish Ministerio de Economía, Industria y Competitividad under Contract Nos. FPA2014-55613-P and SEV-2016-0588; the Chinese Government’s Thousand Talents Plan for Young Professionals; and U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357.


  1. 1.
    C. Patrignani et al., Chin. Phys. C 40(10), 100001 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    C.D. Roberts, Few Body Syst. 58(1), 5 (2017)ADSCrossRefGoogle Scholar
  3. 3.
    P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949)ADSCrossRefGoogle Scholar
  4. 4.
    B.D. Keister, W.N. Polyzou, Adv. Nucl. Phys. 20, 225 (1991)Google Scholar
  5. 5.
    F. Coester, Prog. Part. Nucl. Phys. 29, 1 (1992)ADSCrossRefGoogle Scholar
  6. 6.
    S.J. Brodsky, H.C. Pauli, S.S. Pinsky, Phys. Rep. 301, 299 (1998)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    G.S. Bali, H. Neff, T. Duessel, T. Lippert, K. Schilling, Phys. Rev. D 71, 114513 (2005)ADSCrossRefGoogle Scholar
  8. 8.
    Z. Prkacin et al., PoS LAT2005, 308 (2006)Google Scholar
  9. 9.
    R.T. Cahill, C.D. Roberts, J. Praschifka, Phys. Rev. D 36, 2804 (1987)ADSCrossRefGoogle Scholar
  10. 10.
    R.T. Cahill, C.D. Roberts, J. Praschifka, Aust. J. Phys. 42, 129 (1989)ADSCrossRefGoogle Scholar
  11. 11.
    A. Bender, C.D. Roberts, L. Von Smekal, Phys. Lett. B 380, 7 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    P. Maris, Few Body Syst. 32, 41 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    M.S. Bhagwat et al., Phys. Rev. C 70, 035205 (2004)ADSCrossRefGoogle Scholar
  14. 14.
    H.L.L. Roberts et al., Phys. Rev. C 83, 065206 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    J. Segovia et al., Phys. Lett. B 731, 13 (2014)ADSCrossRefGoogle Scholar
  16. 16.
    J. Segovia, I.C. Cloet, C.D. Roberts, S.M. Schmidt, Few Body Syst. 55, 1185 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    J. Segovia, C.D. Roberts, S.M. Schmidt, Phys. Lett. B 750, 100 (2015)ADSCrossRefGoogle Scholar
  18. 18.
    J. Segovia et al., Phys. Rev. Lett. 115(17), 171801 (2015)ADSCrossRefGoogle Scholar
  19. 19.
    G. Eichmann et al., Prog. Part. Nucl. Phys. 91, 1 (2016)ADSCrossRefGoogle Scholar
  20. 20.
    J. Segovia, C.D. Roberts, Phys. Rev. C 94, 042201 (2016)ADSCrossRefGoogle Scholar
  21. 21.
    V.D. Burkert, C.D. Roberts. arXiv:1710.02549 [nucl-ex]
  22. 22.
    C. Alexandrou, P. de Forcrand, B. Lucini, Phys. Rev. Lett. 97, 222002 (2006)ADSCrossRefGoogle Scholar
  23. 23.
    R. Babich et al., Phys. Rev. D 76, 074021 (2007)ADSCrossRefGoogle Scholar
  24. 24.
    C. Chen et al. arXiv:1711.03142 [nucl-th]
  25. 25.
    O. Gayou et al., Phys. Rev. C 64, 038202 (2001)ADSCrossRefGoogle Scholar
  26. 26.
    V. Punjabi et al., Phys. Rev. C 71, 055202 (2005)ADSCrossRefGoogle Scholar
  27. 27.
    A.J.R. Puckett et al., Phys. Rev. Lett. 104, 242301 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    A.J.R. Puckett et al., Phys. Rev. C 85, 045203 (2012)ADSCrossRefGoogle Scholar
  29. 29.
    G.D. Cates et al., Phys. Rev. Lett. 106, 252003 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    S. Riordan et al., Phys. Rev. Lett. 105, 262302 (2010)ADSCrossRefGoogle Scholar
  31. 31.
    H. Zhu et al., Phys. Rev. Lett. 87, 081801 (2001)ADSCrossRefGoogle Scholar
  32. 32.
    J. Bermuth et al., Phys. Lett. B 564, 199 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    G. Warren et al., Phys. Rev. Lett. 92, 042301 (2004)ADSCrossRefGoogle Scholar
  34. 34.
    D.I. Glazier et al., Eur. Phys. J. A 24, 101 (2005)ADSCrossRefGoogle Scholar
  35. 35.
    B. Plaster et al., Phys. Rev. C 73, 025205 (2006)ADSCrossRefGoogle Scholar
  36. 36.
    G.P. Lepage, S.J. Brodsky, Phys. Lett. 87B, 359 (1979)ADSCrossRefGoogle Scholar
  37. 37.
    A.V. Efremov, A.V. Radyushkin, Phys. Lett. 94B, 245 (1980)ADSCrossRefGoogle Scholar
  38. 38.
    G.P. Lepage, S.J. Brodsky, Phys. Rev. D 22, 2157 (1980)ADSCrossRefGoogle Scholar
  39. 39.
    V. Braun, R.J. Fries, N. Mahnke, E. Stein, Nucl. Phys. B 589, 381 (2000)ADSCrossRefGoogle Scholar
  40. 40.
    C. Mezrag, J. Segovia, L. Chang, C.D. Roberts. arXiv:1711.09101 [nucl-th]

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IFAE and BISTUniversitat Autònoma de BarcelonaBellaterraSpain
  2. 2.Istituto Nazionale di Fisica NucleareRomeItaly
  3. 3.School of PhysicsNankai UniversityTianjinChina
  4. 4.Physics DivisionArgonne National LaboratoryArgonneUSA

Personalised recommendations