Skip to main content

Advertisement

Log in

Immunotherapeutic advances in gastric cancer

  • Review Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Advanced gastric cancers are responsible for overwhelming human suffering and death. Despite the development of combination chemotherapies, the survival rates of patients with gastric cancer remain unsatisfactory. Given the growing evidence of the benefits of immunotherapy as an alternative treatment for other cancers such as advanced melanoma, non-small cell lung cancer, renal cell carcinoma, and refractory Hodgkin’s lymphoma, researchers have begun to explore its application in the treatment of gastric cancer. Three types of immunotherapy have shown promising effects against gastric cancer: immune checkpoint inhibitors, chimeric antigen rector (CAR)-T cells, and tumor vaccines. Clinical trials have used either immuno-oncology monotherapies or combination immuno-chemotherapies to improve the overall survival times and objective response rates of patients with gastric cancer. We review the clinical efficacy of immunotherapy including checkpoint inhibitors, CAR‑T, and tumor vaccines, in the treatment of gastric cancer. Based on initial evidence, we believe that immunotherapy could positively impact the natural history and improve the outcomes of a subgroup of patients with gastric cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ubukata H, Motohashi G, Tabuchi T, Nagata H, Konishi S, Tabuchi T. Evaluations of interferon-gamma/interleukin-4 ratio and neutrophil/lymphocyte ratio as prognostic indicators in gastric cancer patients. J Surg Oncol. 2010;102(7):742–7.

    Article  PubMed  Google Scholar 

  2. Chen LD, Flies B. Molecular mechanisms of T cell co-stimulation and co-inhibition. Nat Rev Immunol. 2013;13(4):227–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012;12(4):298–306.

    Article  CAS  PubMed  Google Scholar 

  4. Jung KW, Won YJ, Kong HJ, Oh CM, Lee DH, Lee JS. Prediction of cancer incidence and mortality in Korea, 2014. Cancer Res Treat. 2014;46(2):124–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shi L, Chen S, Yang L, Li Y. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J Hematol Oncol. 2013;6(1):74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Han EQ, Li XL, Wang CR, Li TF, Han SY. Chimeric antigen receptor-engineered T cells for cancer immunotherapy: progress and challenges. J Hematol Oncol. 2013;6:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(7378):480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Masihi KN. Fighting infection using immunomodulatory agents. Expert Opin Biol Ther. 2001;1(4):641–53.

    Article  CAS  PubMed  Google Scholar 

  9. Banik D, Moufarrij S, Villagra A. Immunoepigenetics combination therapies: an overview of the role of HDACs in cancer immunotherapy. Int J Mol Sci. 2019;20(9):2241.

    Article  CAS  PubMed Central  Google Scholar 

  10. Koury J, Lucero M, Cato C, Chang L, Geiger J, Henry D, et al. Immunotherapies: exploiting the immune system for cancer treatment. J Immunol Res. 2018;2018:9585614.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Waldman AD, Fritz JM, Lenardo MJ. A guide to cancer immunotherapy: from T cell basic science to clinical practice. Nat Rev Immunol. 2020;20(11):651–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Naran K, Nundalall T, Chetty S, Barth S. Principles of immunotherapy: implications for treatment strategies in cancer and infectious diseases. Front Microbiol. 2018;9:3158.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Couzin-Frankel J. Breakthrough of the year 2013. Cancer Immunother Sci. 2013;342(6165):1432–3.

    CAS  Google Scholar 

  14. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Scapin G, Yang X, Prosise WW, McCoy M, Reichert P, Johnston JM, et al. Structure of full-length human anti-PD1 therapeutic IgG4 antibody pembrolizumab. Nat Struct Mol Biol. 2015;22(12):953–8.

    Article  CAS  PubMed  Google Scholar 

  16. Garon EB, Rizvi NA, Hui R, Leighl N, Balmanoukian AS, Eder JP, et al. Pembrolizumab for the treatment of non-small-cell lung cancer. N Engl J Med. 2015;372(21):2018–28.

    Article  PubMed  Google Scholar 

  17. Muro K, Chung HC, Shankaran V, Geva R, Catenacci D, Gupta S, et al. Pembrolizumab for patients with PD-L1-positive advanced gastric cancer (KEYNOTE-012): a multicentre, open-label, phase 1b trial. Lancet Oncol. 2016;17(6):717–26.

    Article  CAS  PubMed  Google Scholar 

  18. Shitara K, Ozguroglu M, Bang YJ, Di Bartolomeo M, Mandala M, Ryu MH, et al. Pembrolizumab versus paclitaxel for previously treated, advanced gastric or gastro-oesophageal junction cancer (KEYNOTE-061): a randomised, open-label, controlled, phase 3 trial. Lancet. 2018;392(10142):123–33.

    Article  CAS  PubMed  Google Scholar 

  19. Study of pembrolizumab (MK-3475) as first‑line monotherapy and combination therapy for treatment of advanced gastric or gastroesophageal junction adenocarcinoma (MK-3475–062/KEYNOTE-062). www.https://clinicaltrials. gov/ct2/show/NCT02494583.

  20. Kang YK, Boku N, Satoh T, Ryu MH, Chao Y, Kato K, et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10111):2461–71.

    Article  CAS  PubMed  Google Scholar 

  21. Boku N. A phase 3 study of nivolumab (Nivo) in previously treated advanced gastric or gastroesophageal junction (G/GEJ) cancer: updated results and subset analysis by pd-l1 expression (ATTRACTION-02). Ann Oncol. 2017;28:v209–68.

    Article  Google Scholar 

  22. Ready NE, Ott PA, Hellmann MD, Zugazagoitia J, Hann CL, Braud F, et al. Nivolumab monotherapy and nivolmab plus ipilimumab in recurrent small cell lung cancer: results from the CheckMate 032 ramdomized cohort. J Thocac Oncol. 2020;15(3):426–35.

    Article  CAS  Google Scholar 

  23. Brahmer JR, Tykodi SS, Chow LQ, Hwu WJ, Topalian SL, Hwu P, et al. Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. N Engl J Med. 2012;366(26):2455–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Segal NHAS, Brahmer JR, Maio M, Blake-Haskins A, Vasselli XL, Ibrahim RA, et al. Preliminary data from a multi-arm expansion study of MEDI4736, an anti-PD-L1 antibody. J Clin Oncol. 2014;32:3002.

    Article  Google Scholar 

  26. Keilholz U, Mehnert JM, Bauer S, Bourgeois H, Patel MR, Gravenor D, et al. Avelumab in patients with previously treated metastatic melanoma: phase 1b results from the JAVELIN solid tumor trial. J immunother Cancer. 2019. https://doi.org/10.1186/s40425-018-0459-y.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Markus H, Moehler MD, Ozguroglu M, Ryu M, Muntean AS, Lonardi S, et al. Results of the JAVELIN Gastric 100 phase 3 trial: avelumab maintenance following first-line (1L) chemotherapy (CTx) vs continuation of CTx for HER2− advanced gastric or gastroesophageal junction cancer (GC/GEJC). J Clin Oncol. 2020;38:278.

    Google Scholar 

  28. Bang EYRY-J, Van Cutsem E, Lee K-W, Wyrwicz L, Schenker M, Alsina M, Phase III. randomised trial of avelumab versus physician’s choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: primary analysis of JAVELIN Gastric 300. Ann Oncol. 2018;29(10):2052–60.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ipilimumab .https://www.accessdata.fda.gov/scripts/opdlisting/oopd/listResult.cfm. Accessed 17 Sep 2020.

  30. ClinicalTrials.gov: an efficacy study in gastric and gastroesophageal junction cancer comparing ipilimumab versus standard of care immediately following first line chemotherapy. https://clinicaltrials.gov/ct2/show/NCT01585987. Accessed 17 May 2016.

  31. Ralph C, Elkord E, Burt DJ, O’Dwyer JF, Austin EB, Stern PL, Hawkins RE, Thistlethwaite FC. Modulation of lymphocyte regulation for cancer therapy: a phase II trial of tremelimumab in advanced gastric and esophageal adenocarcinoma. Clin Cancer Res. 2010;16(5):1662–72.

    Article  CAS  PubMed  Google Scholar 

  32. Bang YJ, Cho JY, Kim YH, Kim JW, Di Bartolomeo M, Ajani JA, Yamaguchi K, Balogh A, Sanchez T, Moehler M. Efficacy of sequential ipilimumab monotherapy versus best supportive care for unresectable locally advanced/metastatic gastric or gastroesophageal junction cancer. Clin Cancer Res. 2017;23(19):5671–8.

    Article  CAS  PubMed  Google Scholar 

  33. Janjigian YY, Bendell J, Calvo E, Kim JW, Ascierto PA, Sharma P, Ott PA, Peltola K, Jaeger D, Evans J, De Braud F. CheckMate-032 Study: Efficacy and Safety of Nivolumab and Nivolumab Plus Ipilimumab in Patients With Metastatic Esophagogastric Cancer. J Clin Oncol. 2018;36(28):2836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mohme M, Riethdorf S, Pantel K. Circulating and disseminated tumour cells—mechanisms of immune surveillance and escape. Nat Rev Clin Oncol. 2017;14(3):155–67.

    Article  CAS  PubMed  Google Scholar 

  35. McNutt M. Cancer immunotherapy. Science. 2013;342(6165):1417.

    Article  CAS  PubMed  Google Scholar 

  36. Patel JM, Dale GA, Vartabedian VF, Dey P, Selvaraj P. Cancer CARtography: charting out a new approach to cancer immunotherapy. Immunotherapy. 2014;6(6):675–8.

    Article  CAS  PubMed  Google Scholar 

  37. Spear TT, Nagato K, Nishimura MI. Strategies to genetically engineer T cells for cancer immunotherapy. Cancer Immunol Immunother. 2016;65(6):631–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang Q, Zhang Z, Peng M, Fu S, Xue Z, Zhang R. CAR-T cell therapy in gastrointestinal tumors and hepatic carcinoma: From bench to bedside. Oncoimmunology. 2016;5(12):e1251539.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Brudno JN, Kochenderfer JN. Recent advances in CAR T-cell toxicity: mechanisms, manifestations and management. Blood Rev. 2019;34:45–55.

    Article  CAS  PubMed  Google Scholar 

  40. Whilding LM, Maher J. ErbB-targeted CAR T-cell immunotherapy of cancer. Immunotherapy. 2015;7(3):229–41.

    Article  CAS  PubMed  Google Scholar 

  41. A clinical research of CAR-T cells targeting HER2 positive cancer. https://clinicaltrials.gov/ct2/show/NCT02713984. Accessed 19 Mar 2020.

  42. ClinicalTrials.gov, Treatment of chemotherapy refractory human epidermalgrowth factor receptor-2(HER-2) positive advanced solid tumors (CART-HER-2). https://clinicaltrials.gov/ct2/show/NCT01935843. Accessed 28 Jan 2016.

  43. Guest RD, Kirillova N, Mowbray S, Gornall H, Rothwell DG, Cheadle EJ, et al. Definition and application of good manufacturing process-compliant production of CEA-specific chimeric antigen receptor expressing T-cells for phase I/II clinical trial. Cancer Immunol Immunother. 2014;63(2):133–45.

    Article  CAS  PubMed  Google Scholar 

  44. ClinicalTrials.gov, CAR-T cell immunotherapy in MUC1 positive solid tumor. https://clinicaltrials.gov/ct2/show/NCT02617134. Accessed 6 Dec 2016.

  45. ClinicalTrials.gov, Study evaluating the efficacy and safety with CAR-T for stomach cancer (EECSC). https://clinicaltrials.gov/ct2/show/NCT02725125. Accessed 23 Mar 2017.

  46. Ott PA, Hu Z, Keskin DB, Shukla SA, Sun J, Bozym DJ, et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature. 2017;547(7662):217–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ribas A, Butterfield LH, Glaspy JA, Economou JS. Current developments in cancer vaccines and cellular immunotherapy. J Clin Oncol. 2003;21(12):2415–32.

    Article  CAS  PubMed  Google Scholar 

  48. Gilliam ADSA, Watson G. 17DT: an antigastrin immunogen for the treatment of gastrointestinal malignancy. Expert Opin Biol Ther. 2007;7(3):397–404.

    Article  CAS  PubMed  Google Scholar 

  49. Park DJ, Thomas NJ, Yoon C, Yoon SS. Vascular endothelial growth factor a inhibition in gastric cancer. Gastric Cancer. 2015;18(1):33–42.

    Article  CAS  PubMed  Google Scholar 

  50. Sundar R, Rha SY, Yamaue H, Katsuda M, Kono K, Kim HS, et al. A phase I/Ib study of OTSGC-A24 combined peptide vaccine in advanced gastric cancer. BMC Cancer. 2018;18(1):332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Ajani JA, Hecht JR, Ho L, Baker J, Oortgiesen M, Eduljee A, et al. An open-label, multinational, multicenter study of G17DT vaccination combined with cisplatin and 5-fluorouracil in patients with untreated, advanced gastric or gastroesophageal cancer: the GC4 study. Cancer. 2006;106(9):1908–16.

    Article  CAS  PubMed  Google Scholar 

  52. Wada S, Tsunoda T, Baba T, Primus FJ, Kuwano H, Shibuya M, et al. Rationale for antiangiogenic cancer therapy with vaccination using epitope peptides derived from human vascular endothelial growth factor receptor 2. Cancer Res. 2005;65(11):4939–46.

    Article  CAS  PubMed  Google Scholar 

  53. Ishizaki H, Tsunoda T, Wada S, Yamauchi M, Shibuya M, Tahara H. Inhibition of tumor growth with antiangiogenic cancer vaccine using epitope peptides derived from human vascular endothelial growth factor receptor 1. Clin Cancer Res. 2006;12(19):5841–9.

    Article  CAS  PubMed  Google Scholar 

  54. Masuzawa T, Fujiwara Y, Okada K, Nakamura A, Takiguchi S, Nakajima K, et al. Phase I/II study of S-1 plus cisplatin combined with peptide vaccines for human vascular endothelial growth factor receptor 1 and 2 in patients with advanced gastric cancer. Int J Oncol. 2012;41(4):1297–304.

    Article  CAS  PubMed  Google Scholar 

  55. Ishikawa H, Imano M, Shiraishi O, Yasuda A, Peng YF, Shinkai M, et al. Phase I clinical trial of vaccination with LY6K-derived peptide in patients with advanced gastric cancer. Gastric Cancer. 2014;17(1):173–80.

    Article  CAS  PubMed  Google Scholar 

  56. ClinicalTrials.gov: Study of OTSGC-A24 vaccine in advanced gastric cancer. https://clinicaltrials.gov/ct2/show/NCT01227772. Accessed 22 June 2016.

  57. Wang Q, Liu F, Liu L. Prognostic significance of PD-L1 in solid tumor: an updated meta-analysis. Medicine (Baltimore). 2017;96(18):e6369.

    Article  CAS  Google Scholar 

  58. Fuchs CS, Doi T, Jang RW, Muro K, Satoh T, Machado M, et al. Safety and Efficacy of Pembrolizumab Monotherapy in Patients With Previously Treated Advanced Gastric and Gastroesophageal Junction Cancer: Phase 2 Clinical KEYNOTE-059 Trial. JAMA Oncol. 2018;4(5):e180013.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jain RK. Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science. 2005;307(5706):58–62.

    Article  CAS  PubMed  Google Scholar 

  60. Fuchs CS, Tomasek J, Yong CJ, Dumitru F, Passalacqua R, Goswami C, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2014;383(9911):31–9.

    Article  CAS  PubMed  Google Scholar 

  61. Wilke H, Muro K, Van Cutsem E, Oh SC, Bodoky G, Shimada Y, et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): a double-blind, randomised phase 3 trial. Lancet Oncol. 2014;15(11):1224–35.

    Article  CAS  PubMed  Google Scholar 

  62. Petty R, Anthoney A, Metges JP, Alsina M, Goncalves A, Brown J, et al. Phase Ib/II study of elisidepsin in metastatic or advanced gastroesophageal cancer (IMAGE trial). Cancer Chemother Pharmacol. 2016;77(4):819–27.

    Article  CAS  PubMed  Google Scholar 

  63. Bernstein MB, Krishnan S. Hodge JW Chang JY, Immunotherapy and stereotactic ablative radiotherapy (ISABR): a curative approach? Nat Rev Clin Oncol. 2016;13(8):516–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tang C, Wang X, Soh H, Seyedin S, Cortez MA, Krishnan S, et al. Combining radiation and immunotherapy: a new systemic therapy for solid tumors? Cancer Immunol Res. 2014;2(9):831–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Deng L, Liang H, Burnette B, Beckett M, Darga T, Weichselbaum RR, et al. Irradiation and anti-PD-L1 treatment synergistically promote antitumor immunity in mice. J Clin Invest. 2014;124(2):687–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lemke-Miltner CD, Blackwell SE, Yin C, Krug AE, Morris AJ, Krieg AM, et al. Antibody opsonization of a tlr9 agonist-containing virus-like particle enhances in situ immunization. J Immunol. 2020;204(5):1386–94.

    Article  CAS  PubMed  Google Scholar 

  67. Herbst RS, Soria JC, Kowanetz M, Fine GD, Hamid O, Gordon MS, et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515(7528):563–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Umar A, Boland CR, Terdiman JP, Syngal S, de la Chapelle A, Ruschoff J, et al. Revised bethesda guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst. 2004;96(4):261–8.

    Article  CAS  PubMed  Google Scholar 

  69. Khagi Y, Kurzrock R, Patel SP. Next generation predictive biomarkers for immune checkpoint inhibition. Cancer Metastasis Rev. 2017;36(1):179–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kim ST, Cristescu R, Bass AJ, Kim KM, Odegaard JI, Kim K, et al. Comprehensive molecular characterization of clinical responses to PD-1 inhibition in metastatic gastric cancer. Nat Med. 2018;24(9):1449–58.

    Article  CAS  PubMed  Google Scholar 

  71. Gajewski TF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumor microenvironment. Nat Immunol. 2013;14(10):1014–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Solinas C, Pusole G, Demurtas L, Puzzoni M, Mascia R, Morgan G, et al. Tumor infiltrating lymphocytes in gastrointestinal tumors: controversies and future clinical implications. Crit Rev Oncol Hematol. 2017;110:106–16.

    Article  PubMed  Google Scholar 

  73. Ferris RL, Galon J. Additional Support for the Introduction of Immune Cell Quantification in Colorectal Cancer Classification. J Natl Cancer Inst. 2016;108(8):djw033.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Galon J, Mlecnik B, Bindea G, Angell HK, Berger A, Lagorce C, et al. Towards the introduction of the “Immunoscore” in the classification of malignant tumours. J Pathol. 2014;232(2):199–209.

    Article  CAS  PubMed  Google Scholar 

  75. Vetizou M, Pitt JM, Daillere R, Lepage P, Waldschmitt N, Flament C, et al. Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science. 2015;350(6264):1079–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Shin DS, Zaretsky JM, Escuin-Ordinas H, Garcia-Diaz A, Hu-Lieskovan S, Kalbasi A, et al. primary resistance to pd-1 blockade mediated by JAK1/2 mutations. Cancer Discov. 2017;7(2):188–201.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Yoneda.

Ethics declarations

Conflict of interest

Akira Yoneda and his co-authors have no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yoneda, A., Kuroki, T. & Eguchi, S. Immunotherapeutic advances in gastric cancer. Surg Today 51, 1727–1735 (2021). https://doi.org/10.1007/s00595-021-02236-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-021-02236-2

Keywords

Navigation