Surgery Today

, Volume 49, Issue 5, pp 443–450 | Cite as

SOCS3 overexpression in T cells ameliorates chronic airway obstruction in a murine heterotopic tracheal transplantation model

  • Kumi Mesaki
  • Masaomi YamaneEmail author
  • Seiichiro Sugimoto
  • Masayoshi Fujisawa
  • Teizo Yoshimura
  • Takeshi Kurosaki
  • Shinji Otani
  • Shinichiro Miyoshi
  • Takahiro Oto
  • Akihiro Matsukawa
  • Shinichi Toyooka
Original Article



Suppressor of cytokine signaling-3 (SOCS3) is a negative feedback inhibitor of cytokine signaling with T-cell-mediated immunosuppressive effects on obliterative bronchiolitis (OB). In this study, we aimed to investigate the impact of T-cell-specific overexpression of SOCS3 using a murine heterotopic tracheal transplantation (HTT) model.


Tracheal allografts from BALB/c mice were subcutaneously transplanted into wild-type C57BL/6J (B6; WT) mice and SOCS3 transgenic B6 (SOCS3TG) mice. Tracheal allografts were analyzed by immunohistochemistry and quantitative polymerase chain reaction assays at days 7 and 21.


At day 21, allografts in SOCS3TG mice showed significant amelioration of airway obstruction and epithelial loss compared with allografts in WT mice. The intragraft expression of IFN-γ and CXCL10 was suppressed, while that of IL-4 was enhanced in SOCS3TG mice at day 7. The T-bet levels were lower in SOCS3TG allografts than in WT allografts at day 7.


We revealed that the overexpression of SOCS3 in T cells effectively ameliorates OB development in a murine HTT model by inhibiting the Th1 phenotype in the early phase. Our results suggest that the regulation of the T-cell response, through the modulation of SOCS expression, has potential as a new therapeutic strategy for chronic lung allograft dysfunction.


SOCS3 Th1 Lung transplantation CLAD OB 



Chronic lung allograft dysfunction


C-X-C motif chemokine ligand






Janus kinase-signal transducer and activator of transcription


Obliterative bronchiolitis


Recombination activating 1


Standard error of the mean


Suppressor of cytokine signaling


T helper cell


Regulatory T cell



We would like to thank Mr. Haruyuki Watanabe from the Department of Pathology and Experimental Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, for his great technical assistance.


This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.


  1. 1.
    Yusen RD, Edwards LB, Dipchand AI, Goldfarb SB, Kucheryavaya AY, Levvey BJ, et al. The registry of the international society for heart and lung transplantation: thirty-third adult lung and heart-lung transplant report-2016; focus theme: primary diagnostic indications for transplant. J Heart Lung Transplant. 2016;35(10):1170–84.CrossRefGoogle Scholar
  2. 2.
    Weigt SS, DerHovanessian A, Wallace WD, Lynch JP 3rd, Belperio JA. Bronchiolitis obliterans syndrome: the Achilles’ heel of lung transplantation. Semin Respir Crit Care Med. 2013;34(3):336–51.CrossRefGoogle Scholar
  3. 3.
    Hayes D. A review of bronchiolitis obliterans syndrome and therapeutic strategies. J Cardiothorac Surg. 2011;6:92.CrossRefGoogle Scholar
  4. 4.
    Berastegui C, Gomez-Olles S, Sanchez-Vidaurre S, Culebras M, Monforte V, Lopez-Meseguer M, et al., BALF cytokines in different phenotypes of chronic lung allograft dysfunction in lung transplant patients. Clin Transplant. 2017;31(3):e12898.CrossRefGoogle Scholar
  5. 5.
    Husain S, Resende MR, Rajwans N, Zamel R, Pilewski JM, Crespo MM, et al. Elevated CXCL10 (IP-10) in bronchoalveolar lavage fluid is associated with acute cellular rejection after human lung transplantation. Transplantation. 2014;97(1):90–7.CrossRefGoogle Scholar
  6. 6.
    Neujahr DC, Perez SD, Mohammed A, Ulukpo O, Lawrence EC, Fernandez F, et al. Cumulative exposure to gamma interferon-dependent chemokines CXCL9 and CXCL10 correlates with worse outcome after lung transplant. Am J Transplant. 2012;12(2):438–46.CrossRefGoogle Scholar
  7. 7.
    Hodge G, Hodge S, Holmes-Liew CL, Reynolds PN, Holmes M. Bronchiolitis obliterans syndrome is associated with increased peripheral blood natural killer and natural killer T-like granzymes, perforin, and T-helper-type 1 pro-inflammatory cytokines. J Heart Lung Transplant. 2012;31(8):888–95.CrossRefGoogle Scholar
  8. 8.
    Lendermon EA, Dodd-o JM, Coon TA, Miller HL, Ganguly S, Popescu I, et al. CD8(+)IL-17(+) T cells mediate neutrophilic airway obliteration in T-bet-deficient mouse lung allograft recipients. Am J Respir Cell Mol Biol. 2015;52(5):622–33.CrossRefGoogle Scholar
  9. 9.
    Batirel HF, Batirel S, Mitchell RN, Swanson SJ. Interferon-gamma knockout fails to confer protection against obliteration in heterotopic murine tracheal allografts. J Heart Lung Transplant. 2005;24(6):658–64.CrossRefGoogle Scholar
  10. 10.
    Larsen L, Ropke C. Suppressors of cytokine signalling: SOCS. Apmis. 2002;110(12):833–44.CrossRefGoogle Scholar
  11. 11.
    Carow B, Rottenberg ME. SOCS3, a major regulator of infection and inflammation. Front Immunol. 2014;5:58.CrossRefGoogle Scholar
  12. 12.
    Palmer DC, Restifo NP. Suppressors of cytokine signaling (SOCS) in T cell differentiation, maturation, and function. Trends Immunol. 2009;30(12):592–602.CrossRefGoogle Scholar
  13. 13.
    Seki Y, Inoue H, Nagata N, Hayashi K, Fukuyama S, Matsumoto K, et al. SOCS-3 regulates onset and maintenance of T(H)2-mediated allergic responses. Nat Med. 2003;9(8):1047–54.CrossRefGoogle Scholar
  14. 14.
    Chen Z, Laurence A, Kanno Y, Pacher-Zavisin M, Zhu BM, Tato C, et al. Selective regulatory function of Socs3 in the formation of IL-17-secreting T cells. Proc Natl Acad Sci U S A. 2006;103(21):8137–42.CrossRefGoogle Scholar
  15. 15.
    Romain M, Taleb S, Dalloz M, Ponnuswamy P, Esposito B, Perez N, et al. Overexpression of SOCS3 in T lymphocytes leads to impaired interleukin-17 production and severe aortic aneurysm formation in mice—brief report. Arterioscler Thromb Vasc Biol. 2013;33(3):581–4.CrossRefGoogle Scholar
  16. 16.
    Taleb S, Romain M, Ramkhelawon B, Uyttenhove C, Pasterkamp G, Herbin O, et al. Loss of SOCS3 expression in T cells reveals a regulatory role for interleukin-17 in atherosclerosis. J Exp Med. 2009;206(10):2067–77.CrossRefGoogle Scholar
  17. 17.
    Qin H, Wang L, Feng T, Elson CO, Niyongere SA, Lee SJ, et al. TGF-beta promotes Th17 cell development through inhibition of SOCS3. J Immunol. 2009;183(1):97–105.CrossRefGoogle Scholar
  18. 18.
    Gupta PK, Wagner SR, Wu Q, Shilling RA. IL-17A blockade attenuates obliterative bronchiolitis and IFN-gamma cellular immune response in lung allografts. Am J Respir Cell Mol Biol. 2017;56(6):708–15.CrossRefGoogle Scholar
  19. 19.
    Shilling RA, Wilkes DS. Role of Th17 cells and IL-17 in lung transplant rejection. Semin Immunopathol. 2011;33(2):129–34.CrossRefGoogle Scholar
  20. 20.
    Hertz MI, Jessurun J, King MB, Savik SK, Murray JJ. Reproduction of the obliterative bronchiolitis lesion after heterotopic transplantation of mouse airways. Am J Pathol. 1993;142(6):1945–51.Google Scholar
  21. 21.
    Ropponen JO, Syrjala SO, Krebs R, Nykanen A, Tikkanen JM, Lemstrom KB. Innate and adaptive immune responses in obliterative airway disease in rat tracheal allografts. J Heart Lung Transplant. 2011;30(6):707–16.CrossRefGoogle Scholar
  22. 22.
    Neuringer IP, Mannon RB, Coffman TM, Parsons M, Burns K, Yankaskas JR, et al. Immune cells in a mouse airway model of obliterative bronchiolitis. Am J Respir Cell Mol Biol. 1998;19(3):379–86.CrossRefGoogle Scholar
  23. 23.
    Jungraithmayr W, Jang JH, Schrepfer S, Inci I, Weder W. Small animal models of experimental obliterative bronchiolitis. Am J Respir Cell Mol Biol. 2013;48(6):675–84.CrossRefGoogle Scholar
  24. 24.
    Watanabe S, Kasahara K, Waseda Y, Takato H, Nishikawa S, Yoneda T, et al. Imatinib ameliorates bronchiolitis obliterans via inhibition of fibrocyte migration and differentiation. J Heart Lung Transplant. 2017;36(2):138–47.CrossRefGoogle Scholar
  25. 25.
    Zhao Y, Gillen JR, Meher AK, Burns JA, Kron IL, Lau CL. Rapamycin prevents bronchiolitis obliterans through increasing infiltration of regulatory B cells in a murine tracheal transplantation model. J Thorac Cardiovasc Surg. 2016;151(2):487–96.e3.CrossRefGoogle Scholar
  26. 26.
    Gillen JR, Zhao Y, Harris DA, Lapar DJ, Stone ML, Fernandez LG, et al. Rapamycin blocks fibrocyte migration and attenuates bronchiolitis obliterans in a murine model. Ann Thorac Surg. 2013;95(5):1768–75.CrossRefGoogle Scholar
  27. 27.
    Zhou H, Latham CW, Zander DS, Margolin SB, Visner GA. Pirfenidone inhibits obliterative airway disease in mouse tracheal allografts. J Heart Lung Transplant. 2005;24(10):1577–85.CrossRefGoogle Scholar
  28. 28.
    McKane BW, Fernandez F, Narayanan K, Marshbank S, Margolin SB, Jendrisak M, et al. Pirfenidone inhibits obliterative airway disease in a murine heterotopic tracheal transplant model. Transplantation. 2004;77(5):664–9.CrossRefGoogle Scholar
  29. 29.
    Numata K, Kubo M, Watanabe H, Takagi K, Mizuta H, Okada S, et al. Overexpression of suppressor of cytokine signaling-3 in T cells exacerbates acetaminophen-induced hepatotoxicity. J Immunol. 2007;178(6):3777–85.CrossRefGoogle Scholar
  30. 30.
    Watanabe H, Kubo M, Numata K, Takagi K, Mizuta H, Okada S, et al. Overexpression of suppressor of cytokine signaling-5 in T cells augments innate immunity during septic peritonitis. J Immunol. 2006;177(12):8650–7.CrossRefGoogle Scholar
  31. 31.
    Seki Y, Hayashi K, Matsumoto A, Seki N, Tsukada J, Ransom J, et al. Expression of the suppressor of cytokine signaling-5 (SOCS5) negatively regulates IL-4-dependent STAT6 activation and Th2 differentiation. Proc Natl Acad Sci USA. 2002;99(20):13003–8.CrossRefGoogle Scholar
  32. 32.
    Higuchi T, Jaramillo A, Kaleem Z, Patterson GA, Mohanakumar T. Different kinetics of obliterative airway disease development in heterotopic murine tracheal allografts induced by CD4+ and CD8+ T cells. Transplantation. 2002;74(5):646–51.CrossRefGoogle Scholar
  33. 33.
    Fan K, Qiao XW, Nie J, Yuan L, Guo HZ, Zheng ZK, et al. Orthotopic and heterotopic tracheal transplantation model in studying obliterative bronchiolitis. Transpl Immunol. 2013;28(4):170–5.CrossRefGoogle Scholar
  34. 34.
    Lemaitre PH, Vokaer B, Charbonnier LM, Iwakura Y, Estenne M, Goldman M, et al. IL-17A mediates early post-transplant lesions after heterotopic trachea allotransplantation in mice. PLoS One. 2013;8(7):e70236.CrossRefGoogle Scholar
  35. 35.
    Zhang R, Fang H, Chen R, Ochando JC, Ding Y, Xu J. IL-17A is critical for CD8+ T effector response in airway epithelial injury after transplantation. Transplantation. 2018;102(12):e483–e493.CrossRefGoogle Scholar
  36. 36.
    Wynn TA. Fibrotic disease and the T(H)1/T(H)2 paradigm. Nat Rev Immunol. 2004;4(8):583–94.CrossRefGoogle Scholar
  37. 37.
    Keane MP, Gomperts BN, Weigt S, Xue YY, Burdick MD, Nakamura H, et al. IL-13 is pivotal in the fibro-obliterative process of bronchiolitis obliterans syndrome. J Immunol. 2007;178(1):511–9.CrossRefGoogle Scholar
  38. 38.
    Lemaitre PH, Vokaer B, Charbonnier LM, Iwakura Y, Field KA, Estenne M, et al. Cyclosporine A drives a Th17- and Th2-mediated posttransplant obliterative airway disease. Am J Transplant. 2013;13(3):611–20.CrossRefGoogle Scholar
  39. 39.
    Hill GR, Kuns RD, Raffelt NC, Don AL, Olver SD, Markey KA, et al. SOCS3 regulates graft-versus-host disease. Blood. 2010;116(2):287–96.CrossRefGoogle Scholar
  40. 40.
    Ronn SG, Borjesson A, Bruun C, Heding PE, Frobose H, Mandrup-Poulsen T, et al. Suppressor of cytokine signalling-3 expression inhibits cytokine-mediated destruction of primary mouse and rat pancreatic islets and delays allograft rejection. Diabetologia. 2008;51(10):1873–82.CrossRefGoogle Scholar
  41. 41.
    Xu Q, Zheng F, Gong F, Fang M. Suppressor of cytokine signaling 3 (SOCS3) gene transfer prolongs the survival of the murine cardiac allograft by attenuating interleukin-17-producing alloreactive T-cell responses. J Gene Med. 2014;16(3–4):66–74.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Kumi Mesaki
    • 1
  • Masaomi Yamane
    • 1
    Email author
  • Seiichiro Sugimoto
    • 1
  • Masayoshi Fujisawa
    • 2
  • Teizo Yoshimura
    • 2
  • Takeshi Kurosaki
    • 3
  • Shinji Otani
    • 3
  • Shinichiro Miyoshi
    • 1
  • Takahiro Oto
    • 3
  • Akihiro Matsukawa
    • 2
  • Shinichi Toyooka
    • 1
  1. 1.Department of General Thoracic Surgery and Breast and Endocrinological SurgeryOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
  2. 2.Department of Pathology and Experimental MedicineOkayama University Graduate School of Medicine, Dentistry and Pharmaceutical SciencesOkayamaJapan
  3. 3.Organ Transplant CenterOkayama University HospitalOkayamaJapan

Personalised recommendations