Skip to main content

Advertisement

Log in

A prognostic index for colorectal cancer based on preoperative absolute lymphocyte, monocyte, and neutrophil counts

  • Original Article
  • Published:
Surgery Today Aims and scope Submit manuscript

Abstract

Purpose

Associations between the preoperative absolute neutrophil count (NC), lymphocyte count (LC), and monocyte count (MC) in the peripheral blood and the prognosis of colorectal cancer (CRC) patients have not been widely studied.

Methods

We enrolled 361 patients who underwent surgery for CRC between January 2007 and December 2013 to analyze correlations among the LC, MC, and NC and prognosis.

Results

Based on cut-off values determined by a receiver operating characteristic analysis, patients were subgrouped as LymphHigh or LymphLow (cut-off: LC = 1460 cells/µL); as MonoHigh or MonoLow (cut-off: MC = 421 cells/µL); and as NeutHigh or NeutLow (cut-off: NC = 3247 cells/µL). Patients were then given lymphocyte–monocyte–neutrophil (LMN) scores by adding the points of their different subgroups (1 point each for LymphLow, MonoHigh and NeutHigh; 0 points for LymphHigh, MonoLow and NeutLow). The 5-year overall survival rates significantly differed by the LMN score (0: 89.7%, 1: 80.6%, 2: 68.8%, and 3: 57.4%; P < 0.0001). In the multivariate analysis, the LMN score was found to be an independent prognostic indicator.

Conclusions

The combination of the preoperative absolute number of lymphocytes, monocytes, and neutrophils is a useful prognostic indicator in CRC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA: Cancer J Clin. 2011;61:69–90.

    Google Scholar 

  2. Compton C, Fenoglio-Preiser CM, Pettigrew N, Fielding LP. American Joint Committee on Cancer Prognostic Factors Consensus Conference: Colorectal Working Group. Cancer 2000;88:1739–1757.

    Article  Google Scholar 

  3. Yu Z, Chen Z, Wu J, Li Z, Wu Y. Prognostic value of pretreatment serum carbohydrate antigen 19-9 level in patients with colorectal cancer: a meta-analysis. PloS One. 2017;12:e0188139.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Zhang J, Zhang HY, Li J, Shao XY, Zhang CX. The elevated NLR, PLR and PLT may predict the prognosis of patients with colorectal cancer: a systematic review and meta-analysis. Oncotarget. 2017;8:68837–46.

    PubMed  PubMed Central  Google Scholar 

  5. Song S, Li C, Li S, Gao H, Lan X, Xue Y. Derived neutrophil to lymphocyte ratio and monocyte to lymphocyte ratio may be better biomarkers for predicting overall survival of patients with advanced gastric cancer. OncoTargets therapy. 2017;10:3145–54.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hong S, Zhou T, Fang W, Xue C, Hu Z, Qin T, et al. The prognostic nutritional index (PNI) predicts overall survival of small-cell lung cancer patients. Tumour Biol. 2015;36:3389–97.

    Article  CAS  PubMed  Google Scholar 

  7. Japanese Society for Cancer of the Colon and Rectum. Japanese classification of colorectal carcinoma, 2nd English edition. Kanehara & Co., Ltd, 2009.

  8. Clark EJ, Connor S, Taylor MA, Madhavan KK, Garden OJ, Parks RW. Preoperative lymphocyte count as a prognostic factor in resected pancreatic ductal adenocarcinoma. HPB. 2007;9:456–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Feng JF, Liu JS, Huang Y. Lymphopenia predicts poor prognosis in patients with esophageal squamous cell carcinoma. Medicine. 2014;93:e257.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Saroha S, Uzzo RG, Plimack ER, Ruth K, Al-Saleem T. Lymphopenia is an independent predictor of inferior outcome in clear cell renal carcinoma. J Urol. 2013;189:454–61.

    Article  PubMed  Google Scholar 

  11. Ray-Coquard I, Cropet C, Van Glabbeke M, Sebban C, Le Cesne A, Judson I, et al. Lymphopenia as a prognostic factor for overall survival in advanced carcinomas, sarcomas, and lymphomas. Cancer Res. 2009;69:5383–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gooden MJ, de Bock GH, Leffers N, Daemen T, Nijman HW. The prognostic influence of tumour-infiltrating lymphocytes in cancer: a systematic review with meta-analysis. Br J Cancer. 2011;105:93–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Galon J, Costes A, Sanchez-Cabo F, Kirilovsky A, Mlecnik B, Lagorce-Pages C, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. 313. New York: Science; 2006. pp. 1960–4.

    Google Scholar 

  14. Tang Y, Xu X, Guo S, Zhang C, Tang Y, Tian Y, et al. An increased abundance of tumor-infiltrating regulatory T cells is correlated with the progression and prognosis of pancreatic ductal adenocarcinoma. PloS one. 2014;9:e91551.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Qiu H, Xiao-Jun W, Zhi-Wei Z, Gong C, Guo-Qiang W, Li-Yi Z, et al. The prognostic significance of peripheral T-lymphocyte subsets and natural killer cells in patients with colorectal cancer. Hepato-Gastroenterol. 2009;56:1310–5.

    Google Scholar 

  16. Tachibana T, Onodera H, Tsuruyama T, Mori A, Nagayama S, Hiai H, et al. Increased intratumor Valpha24-positive natural killer T cells: a prognostic factor for primary colorectal carcinomas. Clin Cancer Res. 2005;11:7322–7.

    Article  CAS  PubMed  Google Scholar 

  17. Berntsson J, Nodin B, Eberhard J, Micke P, Jirstrom K. Prognostic impact of tumour-infiltrating B cells and plasma cells in colorectal cancer. Int J Cancer. 2016;139:1129–39.

    Article  CAS  PubMed  Google Scholar 

  18. Yoshikawa T, Saito H, Osaki T, Matsumoto S, Tsujitani S, Ikeguchi M. Elevated Fas expression is related to increased apoptosis of circulating CD8 + T cell in patients with gastric cancer. J Surg Res. 2008;148:143–51.

    Article  CAS  PubMed  Google Scholar 

  19. Sionov RV, Fridlender ZG, Granot Z. The multifaceted roles neutrophils play in the tumor microenvironment. Cancer Microenviron. 2015;8:125–58.

    Article  CAS  PubMed  Google Scholar 

  20. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, et al. Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell. 2009;16:183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sun R, Luo J, Li D, Shu Y, Luo C, Wang SS, et al. Neutrophils with protumor potential could efficiently suppress tumor growth after cytokine priming and in presence of normal NK cells. Oncotarget. 2014;5:12621–34.

    PubMed  PubMed Central  Google Scholar 

  22. Chung YC, Chang YF. Serum interleukin-6 levels reflect the disease status of colorectal cancer. J Surg Oncol. 2003;83:222–6.

    Article  PubMed  Google Scholar 

  23. Shim KS, Kim KH, Han WS, Park EB. Elevated serum levels of transforming growth factor-beta1 in patients with colorectal carcinoma: its association with tumor progression and its significant decrease after curative surgical resection. Cancer. 1999;85:554–61.

    Article  CAS  PubMed  Google Scholar 

  24. Matsunaga T, Saito H, Ikeguchi M. Increased B7-H1 and B7-H4 expressions on circulating monocytes and tumor-associated macrophages are involved in immune evasion in patients with gastric cancer. Yonago Acta Medica. 2011;54:1–10.

    PubMed  PubMed Central  Google Scholar 

  25. Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nat Med. 1999;5:1365–9.

    Article  CAS  PubMed  Google Scholar 

  26. Keir ME, Freeman GJ, Sharpe AH. PD-1 regulates self-reactive CD8 + T cell responses to antigen in lymph nodes and tissues. J Immunol. 2007;179:5064–70.

    Article  CAS  PubMed  Google Scholar 

  27. Blank C, Brown I, Peterson AC, Spiotto M, Iwai Y, Honjo T, et al. PD-L1/B7H-1 inhibits the effector phase of tumor rejection by T cell receptor (TCR) transgenic CD8 + T cells. Cancer Res. 2004;64:1140–5.

    Article  CAS  PubMed  Google Scholar 

  28. Curiel TJ, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med. 2003;9:562–7.

    Article  CAS  PubMed  Google Scholar 

  29. Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res. 2005;65:1089–96.

    CAS  PubMed  Google Scholar 

  30. Strome SE, Dong H, Tamura H, Voss SG, Flies DB, Tamada K, et al. B7-H1 blockade augments adoptive T-cell immunotherapy for squamous cell carcinoma. Cancer Res. 2003;63:6501–5.

    CAS  PubMed  Google Scholar 

  31. Wakatsuki K, Sho M, Yamato I, Takayama T, Matsumoto S, Tanaka T, et al. Clinical impact of tumor-infiltrating CD45RO(+) memory T cells on human gastric cancer. Oncol Rep. 2013;29:1756–62.

    Article  CAS  PubMed  Google Scholar 

  32. Lohneis P, Sinn M, Bischoff S, Juhling A, Pelzer U, Wislocka L, et al. Cytotoxic tumour-infiltrating T lymphocytes influence outcome in resected pancreatic ductal adenocarcinoma. Eur J Cancer (Oxford, England: 1990). 2017;83:290–301.

    Article  CAS  Google Scholar 

  33. Gordon SR, Maute RL, Dulken BW, Hutter G, George BM, McCracken MN, et al. PD-1 expression by tumour-associated macrophages inhibits phagocytosis and tumour immunity. Nature. 2017;545:495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Park YJ, Park KJ, Park JG, Lee KU, Choe KJ, Kim JP. Prognostic factors in 2230 Korean colorectal cancer patients: analysis of consecutively operated cases. World J Surg. 1999;23:721–6.

    Article  CAS  PubMed  Google Scholar 

  35. Randolph GJ, Beaulieu S, Lebecque S, Steinman RM, Muller WA. Differentiation of monocytes into dendritic cells in a model of transendothelial trafficking. 282. New York: Science; 1998. pp. 480–3.

    Google Scholar 

  36. Randolph GJ, Inaba K, Robbiani DF, Steinman RM, Muller WA. Differentiation of phagocytic monocytes into lymph node dendritic cells in vivo. Immunity. 1999;11:753–61.

    Article  CAS  PubMed  Google Scholar 

  37. Ginhoux F, Tacke F, Angeli V, Bogunovic M, Loubeau M, Dai XM, et al. Langerhans cells arise from monocytes in vivo. Nat Immunol. 2006;7:265–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Saito T, Nishikawa H, Wada H. Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med. 2016;22:679–84.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Marla Brunker, from Edanz Group (http://www.edanzediting.com/ac) for editing a draft of this manuscript.

Funding

The authors received no grants, equipment or funding for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Saito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanio, A., Saito, H., Uejima, C. et al. A prognostic index for colorectal cancer based on preoperative absolute lymphocyte, monocyte, and neutrophil counts. Surg Today 49, 245–253 (2019). https://doi.org/10.1007/s00595-018-1728-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00595-018-1728-6

Keywords

Navigation