Profile of non-responder and late responder patients treated for diabetic macular edema: systemic and ocular factors

Abstract

Diabetic macular edema (DME) treatment represents a challenge for the ophthalmologists, and several aspects of real treatment expectancy are still being discussed and not yet fully elucidated. A univocal definition of responsiveness to treatment has not been reached. How the clinicians can evaluate the therapeutic success? The evaluation of systemic and ocular factors should help in this complex management. The age influences the long-term outcomes, and the role of glycemic control is confounded by contrasting correlations between hemoglobin glycated A1c and DME. Long-term treatment success is influenced by baseline best-corrected visual acuity (BCVA), central macular thickness (CMT) and early BCVA response. Also baseline diabetic retinopathy severity scale score is useful to evaluate the chances of improvement before and during treatments. The time-switching was influenced by early BCVA response, however considering a delayed response in a percentage of patients. Several structural optical coherence tomography (OCT) findings could predict long-term success, as the presence of serous retinal detachment, hyperreflective retinal spots, the disruption of external limiting membrane and ellipsoid zone, the disorganization of inner retinal layers and continued increase in CMT were considered predictors of poor response to treatment. Foveal avascular zone enlargement, high number of microaneurysms (Mas), lower vessel density (VD) in deep capillary plexus and lower parafoveal VD in superficial capillary plexus were considered as OCT angiography biomarkers of poor responsiveness. The aim of this review is to report the factors that could influence the response to treatment of DME patients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. 1.

    Virgili G, Parravano M, Menchini F, Evans JR (2014) Anti-vascular endothelial growth factor for diabetic macular oedema. Cochrane Database Syst Rev 10:CD007419

    Google Scholar 

  2. 2.

    Bressler NM, Beaulieu WT, Glassman AR et al (2018) Persistent macular thickening following intravitreous aflibercept, bevacizumab, or ranibizumab for central-involved diabetic macular edema with vision impairment: a secondary analysis of a randomized clinical trial. JAMA Ophthalmol 136(3):257–269

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Diabetic Retinopathy Clinical Research Network, Elman MJ, Aiello LP et al (2010) Randomized trial evaluating ranibizumab plus prompt or deferred laser or triamcinolone plus prompt laser for diabetic macular edema. Ophthalmology 117(6):1064–1077.e35

    Google Scholar 

  4. 4.

    Nguyen QD, Brown DM, Marcus DM et al (2012) Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 119(4):789–801

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Diabetic Retinopathy Clinical Research Network, Browning DJ, Glassman AR et al (2007) Relationship between optical coherence tomography-measured central retinal thickness and visual acuity in diabetic macular edema. Ophthalmology 114(3):525–536

    Google Scholar 

  6. 6.

    Diabetic Retinopathy Clinical Research Network, Wells JA, Glassman AR et al (2015) Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med 372(13):1193–1203

    Google Scholar 

  7. 7.

    Bressler NM, Odia I, Maguire M, Glassman AR, Jampol LM, MacCumber MW, Shah C, Rosberger D, Sun JK, DRCR Retina Network (2019) Association between change in visual acuity and change in central subfield thickness during treatment of diabetic macular edema in participants randomized to aflibercept, bevacizumab, or ranibizumab: a post hoc analysis of the Protocol T Randomized Clinical Trial. JAMA Ophthalmol. https://doi.org/10.1001/jamaophthalmol.2019.1963

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    White NH, Sun W, Cleary PA et al (2008) Prolonged effect of intensive therapy on the risk of retinopathy complications in patients with type 1 diabetes mellitus: 10 years after the diabetes control and complications trial. Arch Ophthalmol 126(12):1707–1715

    PubMed  Google Scholar 

  9. 9.

    Singh RP, Habbu K, Ehlers JP, Lansang MC, Hill L, Stoilov I (2016) The impact of systemic factors on clinical response to ranibizumab for diabetic macular edema. Ophthalmology 123(7):1581–1587

    PubMed  Google Scholar 

  10. 10.

    Brown DM, Schmidt-Erfurth U, Do DV et al (2015) Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies. Ophthalmology 122(10):2044–2052

    PubMed  Google Scholar 

  11. 11.

    Bressler SB, Odia I, Maguire MG et al (2019) Factors associated with visual acuity and central subfield thickness changes when treating diabetic macular edema with anti-vascular endothelial growth factor therapy: an exploratory analysis of the Protocol T Randomized Clinical Trial. JAMA Ophthalmol 137(4):382–389

    PubMed  PubMed Central  Google Scholar 

  12. 12.

    Urias EA, Urias GA, Monickaraj F, McGuire P, Das A (2017) Novel therapeutic targets in diabetic macular edema: beyond VEGF. Vis Res 139:221–227

    PubMed  Google Scholar 

  13. 13.

    Cunha-Vaz J (2017) Mechanisms of retinal fluid accumulation and blood-retinal barrier breakdown. Dev Ophthalmol 58:11–20

    PubMed  Google Scholar 

  14. 14.

    Hsieh YT, Tsai MJ, Tu ST, Hsieh MC (2018) Association of abnormal renal profiles and proliferative diabetic retinopathy and diabetic macular edema in an Asian population with type 2 diabetes. JAMA Ophthalmol 136(1):68–74

    PubMed  Google Scholar 

  15. 15.

    Yamamoto M, Fujihara K, Ishizawa M et al (2019) Overt proteinuria, moderately reduced eGFR and their combination are predictive of severe diabetic retinopathy or diabetic macular edema in diabetes. Invest Ophthalmol Vis Sci 60(7):2685–2689

    CAS  PubMed  Google Scholar 

  16. 16.

    Ong SS, Thomas AS, Fekrat S (2017) Improvement of recalcitrant diabetic macular edema after peritoneal dialysis. Ophthalmic Surg Lasers Imaging Retina 48(10):834–837

    PubMed  Google Scholar 

  17. 17.

    Kameda Y, Babazono T, Uchigata Y, Kitano S (2018) Renal function after intravitreal administration of vascular endothelial growth factor inhibitors in patients with diabetes and chronic kidney disease. J Diabetes Investig 9(4):937–939

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Bressler SB, Ayala AR, Bressler NM et al (2016) Persistent macular thickening after ranibizumab treatment for diabetic macular edema with vision impairment. JAMA Ophthalmol 134(3):278–285

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Dhoot DS, Baker K, Saroj N, Vitti R, Berliner AJ, Metzig C, Thompson D, Singh RP (2018) Baseline factors affecting changes in diabetic retinopathy severity scale score after intravitreal aflibercept or laser for diabetic macular edema: post hoc analyses from VISTA and VIVID. Ophthalmology 125(1):51–56

    PubMed  Google Scholar 

  20. 20.

    Gonzalez VH, Campbell J, Holekamp NM et al (2016) early and long-term responses to anti-vascular endothelial growth factor therapy in diabetic macular edema: analysis of protocol I data. Am J Ophthalmol 172:72–79

    CAS  PubMed  Google Scholar 

  21. 21.

    Zhang L, Wang W, Gao Y, Lan J, Xie L (2016) The efficacy and safety of current treatments in diabetic macular edema: a systematic review and network meta-analysis. PLoS ONE 11(7):e0159553

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Querques G, Lattanzio R, Querques L et al (2012) Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Ophthalmol Vis Sci 53(10):6017–6024

    PubMed  Google Scholar 

  23. 23.

    Rayess N, Rahimy E, Ying GS et al (2015) Baseline choroidal thickness as a predictor for response to anti-vascular endothelial growth factor therapy in diabetic macular edema. Am J Ophthalmol 159(1):85–91

    CAS  PubMed  Google Scholar 

  24. 24.

    Staurenghi G, Feltgen N, Arnold JJ et al (2018) Impact of baseline diabetic retinopathy severity scale scores on visual outcomes in the VIVID-DME and VISTA-DME studies. Br J Ophthalmol 102(7):954–958

    PubMed  Google Scholar 

  25. 25.

    Bonnin S, Dupas B, Lavia C et al (2019) Anti-vascular endothelial growth factor therapy can improve diabetic retinopathy score without change in retinal perfusion. Retina 39(3):426–434

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Couturier A, Rey PA, Erginay A, Lavia C, Bonnin S, Dupas B, Gaudric A, Tadayoni R (2019) Widefield OCT-angiography and fluorescein angiography assessments of nonperfusion in diabetic retinopathy and edema treated with anti-vascular endothelial growth factor. Ophthalmology 126(12):1685–1694. https://doi.org/10.1016/j.ophtha.2019.06.022

    Article  PubMed  Google Scholar 

  27. 27.

    Ferris FL, Maguire MG, Glassman AR, Ying GS, Martin DF (2017) Evaluating effects of switching anti-vascular endothelial growth factor drugs for age-related macular degeneration and diabetic macular edema. JAMA Ophthalmol 135(2):145–149

    PubMed  Google Scholar 

  28. 28.

    Pieramici DJ, Wang PW, Ding B, Gune S (2016) Visual and anatomic outcomes in patients with diabetic macular edema with limited initial anatomic response to ranibizumab in RIDE and RISE. Ophthalmology 123(6):1345–1350

    PubMed  Google Scholar 

  29. 29.

    Rahimy E, Shahlaee A, Khan MA et al (2016) Conversion to aflibercept after prior anti-VEGF therapy for persistent diabetic macular edema. Am J Ophthalmol 164:118–127

    CAS  PubMed  Google Scholar 

  30. 30.

    Laiginhas R, Silva MI, Rosas V et al (2018) Aflibercept in diabetic macular edema refractory to previous bevacizumab: outcomes and predictors of success. Graefes Arch Clin Exp Ophthalmol 256(1):83–89

    CAS  PubMed  Google Scholar 

  31. 31.

    Maturi RK, Glassman AR, Liu D et al (2018) Effect of adding dexamethasone to continued ranibizumab treatment in patients with persistent diabetic macular edema: a DRCR network phase 2 randomized clinical trial. JAMA Ophthalmol 136(1):29–38

    PubMed  Google Scholar 

  32. 32.

    Hernández Martínez A, Pereira Delgado E, Silva Silva G, Castellanos Mateos L, Lorente Pascual J, Lainez Villa J, García Vicente P, Almeida-González CV (2019) Early versus late switch: how long should we extend the anti-vascular endothelial growth factor therapy in unresponsive diabetic macular edema patients? Eur J Ophthalmol. https://doi.org/10.1177/1120672119848257

    Article  PubMed  Google Scholar 

  33. 33.

    Cicinelli MV, Cavalleri M, Querques L, Rabiolo A, Bandello F, Querques G (2017) Early response to ranibizumab predictive of functional outcome after dexamethasone for unresponsive diabetic macular oedema. Br J Ophthalmol 101(12):1689–1693

    PubMed  Google Scholar 

  34. 34.

    Busch C, Fraser-Bell S, Iglicki M et al (2019) Real-world outcomes of non-responding diabetic macular edema treated with continued anti-VEGF therapy versus early switch to dexamethasone implant: 2-year results. Acta Diabetol 56(12):1341–1350

    CAS  PubMed  Google Scholar 

  35. 35.

    Seo KH, Yu SY, Kim M, Kwak HW (2016) Visual and morphologic outcomes of intravitreal ranibizumab for diabetic macular edema based on optical coherence tomography patterns. Retina 36(3):588–595

    CAS  PubMed  Google Scholar 

  36. 36.

    Vujosevic S, Torresin T, Berton M, Bini S, Convento E, Midena E (2017) Diabetic macular edema with and without subfoveal neuroretinal detachment: two different morphologic and functional entities. Am J Ophthalmol 181:149–155

    PubMed  Google Scholar 

  37. 37.

    Vujosevic S, Torresin T, Bini S et al (2017) Imaging retinal inflammatory biomarkers after intravitreal steroid and anti-VEGF treatment in diabetic macular oedema. Acta Ophthalmol 95(5):464–471

    CAS  PubMed  Google Scholar 

  38. 38.

    Vujosevic S, Bini S, Torresin T et al (2017) Hyperreflective retinal spots in normal and diabetic eyes: B-scan and en face spectral domain optical coherence tomography evaluation. Retina 37(6):1092–1103

    PubMed  Google Scholar 

  39. 39.

    Vujosevic S, Berton M, Bini S, Casciano M, Cavarzeran F, Midena E (2016) Hyperreflective retinal spots and visual function after anti-vascular endothelial growth factor treatment in center-involving diabetic macular edema. Retina 36(7):1298–1308

    CAS  PubMed  Google Scholar 

  40. 40.

    Schreur V, Altay L, van Asten F et al (2018) Hyperreflective foci on optical coherence tomography associate with treatment outcome for anti-VEGF in patients with diabetic macular edema. PLoS ONE 13(10):e0206482

    PubMed  PubMed Central  Google Scholar 

  41. 41.

    Maheshwary AS, Oster SF, Yuson RM, Cheng L, Mojana F, Freeman WR (2010) The association between percent disruption of the photoreceptor inner segment-outer segment junction and visual acuity in diabetic macular edema. Am J Ophthalmol 150(1):63–67

    PubMed  PubMed Central  Google Scholar 

  42. 42.

    Moon BG, Um T, Lee J, Yoon YH (2018) Correlation between deep capillary plexus perfusion and long-term photoreceptor recovery after diabetic macular edema treatment. Ophthalmol Retina 2(3):235–243

    PubMed  Google Scholar 

  43. 43.

    Sun JK, Lin MM, Lammer J et al (2014) Disorganization of the retinal inner layers as a predictor of visual acuity in eyes with center-involved diabetic macular edema. JAMA Ophthalmol 132(11):1309–1316

    PubMed  Google Scholar 

  44. 44.

    Santos AR, Costa MÂ, Schwartz C et al (2018) Optical coherence tomography baseline predictors for initial best-corrected visual acuity response to intravitreal anti-vascular endothelial growth factor treatment in eyes with diabetic macular edema: the CHARTRES study. Retina 38(6):1110–1119

    CAS  PubMed  Google Scholar 

  45. 45.

    Zur D, Iglicki M, Busch C et al (2018) OCT biomarkers as functional outcome predictors in diabetic macular edema treated with dexamethasone implant. Ophthalmology 125(2):267–275

    PubMed  Google Scholar 

  46. 46.

    Cavalleri M, Cicinelli MV, Parravano M, Varano M, De Geronimo D, Sacconi R, Bandello F, Querques G (2019) Prognostic role of optical coherence tomography after switch to dexamethasone in diabetic macular edema. Acta Diabetol 57(2):163–171. https://doi.org/10.1007/s00592-019-01389-4

    CAS  Article  PubMed  Google Scholar 

  47. 47.

    Ashraf M, Souka A, Adelman R (2016) Predicting outcomes to anti-vascular endothelial growth factor (VEGF) therapy in diabetic macular oedema: a review of the literature. Br J Ophthalmol 100(12):1596–1604

    PubMed  Google Scholar 

  48. 48.

    Couturier A, Mané V, Bonnin S et al (2015) Capillary plexus anomalies in diabetic retinopathy on optical coherence tomography angiography. Retina 35(11):2384–2391

    PubMed  Google Scholar 

  49. 49.

    Lee J, Moon BG, Cho AR, Yoon YH (2016) Optical coherence tomography angiography of DME and its association with anti-VEGF treatment response. Ophthalmology 123(11):2368–2375

    PubMed  Google Scholar 

  50. 50.

    Scarinci F, Nesper PL, Fawzi AA (2016) Deep retinal capillary nonperfusion is associated with photoreceptor disruption in diabetic macular ischemia. Am J Ophthalmol 168:129–138

    PubMed  PubMed Central  Google Scholar 

  51. 51.

    Parravano M, De Geronimo D, Scarinci F et al (2017) Diabetic microaneurysms internal reflectivity on spectral-domain optical coherence tomography and optical coherence tomography angiography detection. Am J Ophthalmol 179:90–96

    PubMed  Google Scholar 

  52. 52.

    Balaratnasingam C, Inoue M, Ahn S et al (2016) Visual acuity is correlated with the area of the foveal avascular zone in diabetic retinopathy and retinal vein occlusion. Ophthalmology 123(11):2352–2367

    PubMed  Google Scholar 

  53. 53.

    Hsieh YT, Alam MN, Le D, Hsiao CC, Yang CH, Chao DL, Yao X (2019) OCT angiography biomarkers for predicting visual outcomes after ranibizumab treatment for diabetic macular edema. Ophthalmol Retina 3(10):826–834. https://doi.org/10.1016/j.oret.2019.04.027

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Busch C, Wakabayashi T, Sato T et al (2019) Retinal microvasculature and visual acuity after intravitreal aflibercept in diabetic macular edema: an optical coherence tomography angiography study. Sci Rep 9(1):1561

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Toto L, D’Aloisio R, Di Nicola M et al (2017) Qualitative and quantitative assessment of vascular changes in diabetic macular edema after dexamethasone implant using optical coherence tomography angiography. Int J Mol Sci 18(6):1181

    PubMed Central  Google Scholar 

  56. 56.

    Felfeli T, Juncal VR, Hillier RJ, Mak MYK, Wong DT, Berger AR, Kohly RP, Kertes PJ, Eng KT, Boyd SR, Altomare F, Giavedoni LR, Muni RH (2019) Aqueous humor cytokines and long-term response to anti-vascular endothelial growth factor therapy in diabetic macular edema. Am J Ophthalmol 206:176–183. https://doi.org/10.1016/j.ajo.2019.04.002

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Figueras-Roca M, Sala-Puigdollers A, Zarranz-Ventura J et al (2019) Anatomic response to intravitreal dexamethasone implant and baseline aqueous humor cytokine levels in diabetic macular edema. Invest Ophthalmol Vis Sci 60(5):1336–1343

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research for this paper was in part financially supported by Italian Ministry of Health and Fondazione Roma. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Funding

None.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mariacristina Parravano.

Ethics declarations

Conflict of interest

Mariacristina Parravano has the following disclosures: Allergan (S), Bayer (S); Novartis (S). Eliana Costanzo has nothing to disclose. Giuseppe Querques has the following disclosures: Allergan (S), Alimera (S), Amgen (S), Bayer (S), KHB (S), Novartis (S), Roche (S), Sandoz (S), Zeiss (S); Allergan (C), Alimera (C), Bausch and Lomb (C), Bayer (C), Heidelberg (C), Novartis (C), Zeiss (C).

Ethical approval

For this review no ethical standard statement was applicable.

Informed consent

For this review no informed consent was applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the topical collection Eye Complications of Diabetes, managed by Giuseppe Querques.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Parravano, M., Costanzo, E. & Querques, G. Profile of non-responder and late responder patients treated for diabetic macular edema: systemic and ocular factors. Acta Diabetol 57, 911–921 (2020). https://doi.org/10.1007/s00592-020-01496-7

Download citation

Keywords

  • Diabetic macular edema
  • Non-responder DME patients
  • Late responder DME patients
  • Optical coherence tomography
  • Optical coherence tomography angiography