Hyperreflective foci in diabetic macular edema with serous retinal detachment: association with dyslipidemia



Hyperreflective foci (HF), detected in the retina of diabetic patients, suggest the presence of microglial activation and migration, while controversies still remain for the origin of HF to be precursors of hard exudates. We investigated the presence of HF and their association with dyslipidemia in serous retinal detachment (SRD)-type diabetic macular edema (DME).


Forty-two eyes in 42 patients with diabetic retinopathy (DR) and 22 eyes in 22 patients with branch retinal vascular occlusion (BRVO) showing macular edema were included in this study. The medical records and OCT findings were retrospectively reviewed in patients with SRD-type DME and compared with those with BRVO. The mean number of HF, the mean choroidal thickness, and lipid profiles were analyzed and compared between groups.


The mean number of HF was significantly higher in DR group compared to BRVO group. Significant correlation of HF was noted with triglycerides (r = 0.523, P = 0.002). Triglycerides were significantly associated with HF by linear regression (β = 0.012, 95% CI 0.001–0.024, P = 0.034) and remained significantly associated by multiple linear regression (β = 0.014, 95% CI 0.003–0.025, P = 0.014).


HF on OCT of DME patients could be indicative of activated microglia. HF are associated with dyslipidemia, especially high triglycerides, suggesting inflammatory reaction from dyslipidemia in diabetic retina.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Bandello F, Lattanzio R, Zucchiatti I, Del Turco C (2013) Pathophysiology and treatment of diabetic retinopathy. Acta Diabetol 50:1–20

    CAS  Article  Google Scholar 

  2. 2.

    Kim JT, Lee DH, Joe SG, Kim JG, Yoon YH (2013) Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Investig Ophthalmol Vis Sci 54:3378–3384

    Article  Google Scholar 

  3. 3.

    Otani T, Kishi S, Maruyama Y (1999) Patterns of diabetic macular edema with optical coherence tomography. Am J Ophthalmol 127:688–693

    CAS  Article  Google Scholar 

  4. 4.

    Sonoda S, Sakamoto T, Shirasawa M, Yamashita T, Otsuka H, Terasaki H (2013) Correlation between reflectivity of subretinal fluid in OCT images and concentration of intravitreal VEGF in eyes with diabetic macular edema. Investig Ophthalmol Vis Sci 54:5367–5374

    CAS  Article  Google Scholar 

  5. 5.

    Sonoda S, Sakamoto T, Yamashita T, Shirasawa M, Otsuka H, Sonoda Y (2014) Retinal morphologic changes and concentrations of cytokines in eyes with diabetic macular edema. Retina 34:741–748

    CAS  Article  Google Scholar 

  6. 6.

    Daruich A, Matet A, Moulin A et al (2018) Mechanisms of macular edema: beyond the surface. Prog Retin Eye Res 63:20–68

    Article  Google Scholar 

  7. 7.

    Omri S, Behar-Cohen F, de Kozak Y et al (2011) Microglia/macrophages migrate through retinal epithelium barrier by a transcellular route in diabetic retinopathy: role of PKCzeta in the Goto Kakizaki rat model. Am J Pathol 179:942–953

    CAS  Article  Google Scholar 

  8. 8.

    Bolz M, Schmidt-Erfurth U, Deak G, Mylonas G, Kriechbaum K, Scholda C (2009) Optical coherence tomographic hyperreflective foci: a morphologic sign of lipid extravasation in diabetic macular edema. Ophthalmology 116:914–920

    Article  Google Scholar 

  9. 9.

    Vujosevic S, Bini S, Midena G, Berton M, Pilotto E, Midena E (2013) Hyperreflective intraretinal spots in diabetics without and with nonproliferative diabetic retinopathy: an in vivo study using spectral domain OCT. J Diabetes Res 2013:491835

    PubMed  PubMed Central  Google Scholar 

  10. 10.

    Vujosevic S, Torresin T, Bini S et al (2017) Imaging retinal inflammatory biomarkers after intravitreal steroid and anti-VEGF treatment in diabetic macular oedema. Acta Ophthalmol 95:464–471

    CAS  Article  Google Scholar 

  11. 11.

    Jaulim A, Ahmed B, Khanam T, Chatziralli IP (2013) Branch retinal vein occlusion: epidemiology, pathogenesis, risk factors, clinical features, diagnosis, and complications. An update of the literature. Retina 33:901–910

    Article  Google Scholar 

  12. 12.

    Noma H, Mimura T, Yasuda K, Shimura M (2014) Role of inflammation in diabetic macular edema. Ophthalmologica 232:127–135

    CAS  Article  Google Scholar 

  13. 13.

    Zhang W, Liu H, Al-Shabrawey M, Caldwell RW, Caldwell RB (2011) Inflammation and diabetic retinal microvascular complications. J Cardiovasc Dis Res 2:96–103

    Article  Google Scholar 

  14. 14.

    Chung YR, Park SW, Choi SY et al (2017) Association of statin use and hypertriglyceridemia with diabetic macular edema in patients with type 2 diabetes and diabetic retinopathy. Cardiovasc Diabetol 16:4

    Article  Google Scholar 

  15. 15.

    Das R, Kerr R, Chakravarthy U, Hogg RE (2015) Dyslipidemia and diabetic macular edema: a systematic review and meta-analysis. Ophthalmology 122:1820–1827

    Article  Google Scholar 

  16. 16.

    Kang JW, Chung H, Chan Kim H (2016) Correlation of optical coherence tomographic hyperreflective foci with visual outcomes in different patterns of diabetic macular edema. Retina 36:1630–1639

    Article  Google Scholar 

  17. 17.

    Das A, McGuire PG, Rangasamy S (2015) Diabetic macular edema: pathophysiology and novel therapeutic targets. Ophthalmology 122:1375–1394

    Article  Google Scholar 

  18. 18.

    Klaassen I, Van Noorden CJ, Schlingemann RO (2013) Molecular basis of the inner blood-retinal barrier and its breakdown in diabetic macular edema and other pathological conditions. Prog Retin Eye Res 34:19–48

    CAS  Article  Google Scholar 

  19. 19.

    Checchin D, Sennlaub F, Levavasseur E, Leduc M, Chemtob S (2006) Potential role of microglia in retinal blood vessel formation. Investig Ophthalmol Vis Sci 47:3595–3602

    Article  Google Scholar 

  20. 20.

    Altmann C, Schmidt MHH (2018) The role of microglia in diabetic retinopathy: Inflammation, microvasculature defects and neurodegeneration. Int J Mol Sci 19:110

    Article  Google Scholar 

  21. 21.

    Chen L, Yang P, Kijlstra A (2002) Distribution, markers, and functions of retinal microglia. Ocul Immunol Inflamm 10:27–39

    Article  Google Scholar 

  22. 22.

    Jo DH, Yun JH, Cho CS, Kim JH, Kim JH, Cho CH (2019) Interaction between microglia and retinal pigment epithelial cells determines the integrity of outer blood-retinal barrier in diabetic retinopathy. Glia 2019:321–331

    Article  Google Scholar 

  23. 23.

    Vujosevic S, Torresin T, Berton M, Bini S, Convento E, Midena E (2017) Diabetic macular edema with and without subfoveal neuroretinal detachment: two different morphologic and functional entities. Am J Ophthalmol 181:149–155

    Article  Google Scholar 

  24. 24.

    Gallego-Pinazo R, Dolz-Marco R, Pardo-Lopez D et al (2013) Ranibizumab for serous macular detachment in branch retinal vein occlusions. Graefes Arch Clin Exp Ophthalmol 251:9–14

    CAS  Article  Google Scholar 

  25. 25.

    Lee WJ, Kang MH, Seong M, Cho HY (2012) Comparison of aqueous concentrations of angiogenic and inflammatory cytokines in diabetic macular oedema and macular oedema due to branch retinal vein occlusion. Br J Ophthalmol 96:1426–1430

    Article  Google Scholar 

  26. 26.

    Lee H, Jang H, Choi YA, Kim HC, Chung H (2018) Association between soluble CD14 in the aqueous humor and hyperreflective foci on optical coherence tomography in patients with diabetic macular edema. Invest Ophthalmol Vis Sci 59:715–721

    CAS  Article  Google Scholar 

  27. 27.

    Vujosevic S, Toma C, Villani E et al (2019) Diabetic macular edema with neuroretinal detachment: OCT and OCT-angiography biomarkers of treatment response to anti-VEGF and steroids. Acta Diabetol. https://doi.org/10.1007/s00592-019-01424-4

    Article  PubMed  Google Scholar 

  28. 28.

    Choi MY, Jee D, Kwon JW (2019) Characteristics of diabetic macular edema patients refractory to anti-VEGF treatments and a dexamethasone implant. PLoS ONE 14:e0222364

    CAS  Article  Google Scholar 

  29. 29.

    Kim KT, Kim DY, Chae JB (2019) Association between hyperreflective foci on spectral-domain optical coherence tomography and early recurrence of diabetic macular edema after intravitreal dexamethasone implantation. J Ophthalmol 2019:3459164

    PubMed  PubMed Central  Google Scholar 

  30. 30.

    Christenbury JG, Folgar FA, O'Connell RV, Chiu SJ, Farsiu S, Toth CA (2013) Progression of intermediate age-related macular degeneration with proliferation and inner retinal migration of hyperreflective foci. Ophthalmology 120:1038–1045

    Article  Google Scholar 

  31. 31.

    Nassisi M, Lei J, Abdelfattah NS et al (2019) OCT risk factors for development of late age-related macular degeneration in the fellow eyes of patients enrolled in the HARBOR study. Ophthalmology 126:1667–1674

    Article  Google Scholar 

  32. 32.

    Nassisi M, Fan W, Shi Y et al (2018) Quantity of intraretinal hyperreflective foci in patients with intermediate age-related macular degeneration correlates with 1-year progression. Investig Ophthalmol Vis Sci 59:3431–3439

    CAS  Article  Google Scholar 

  33. 33.

    Ho J, Witkin AJ, Liu J et al (2011) Documentation of intraretinal retinal pigment epithelium migration via high-speed ultrahigh-resolution optical coherence tomography. Ophthalmology 118:687–693

    Article  Google Scholar 

  34. 34.

    Saha S, Nassisi M, Wang M et al (2019) Automated detection and classification of early AMD biomarkers using deep learning. Sci Rep 9:10990

    Article  Google Scholar 

  35. 35.

    Hammer SS, Busik JV (2017) The role of dyslipidemia in diabetic retinopathy. Vision Res 139:228–236

    Article  Google Scholar 

  36. 36.

    Davoudi S, Papavasileiou E, Roohipoor R et al (2016) Optical coherence tomography characteristics of macular edema and hard exudates and their association with lipid serum levels in type 2 diabetes. Retina 36:1622–1629

    CAS  Article  Google Scholar 

  37. 37.

    De Benedetto U, Sacconi R, Pierro L, Lattanzio R, Bandello F (2015) Optical coherence tomographic hyperreflective foci in early stages of diabetic retinopathy. Retina 35:449–453

    Article  Google Scholar 

  38. 38.

    Rübsam A, Parikh S, Fort PE (2018) Role of inflammation in diabetic retinopathy. Int J Mol Sci 19:942

    Article  Google Scholar 

  39. 39.

    Graeber MB, Li W, Rodriguez ML (2011) Role of microglia in CNS inflammation. FEBS Lett 585:3798–3805

    CAS  Article  Google Scholar 

  40. 40.

    Tang J, Kern TS (2011) Inflammation in diabetic retinopathy. Prog Retin Eye Res 30:343–358

    CAS  Article  Google Scholar 

Download references


This study was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2017R1D1A1A02018439).

Author information



Corresponding author

Correspondence to Kihwang Lee.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This study was approved by the Institutional Review Board of Ajou University Hospital, Suwon, Korea (IRB No.: MED-MDB-18-481) and complied with the Declaration of Helsinki.

Informed consent

For this type of study, no informed consent is required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the topical collection Eye Complications of Diabetes, managed by Giuseppe Querques.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chung, YR., Lee, S.Y., Kim, Y.H. et al. Hyperreflective foci in diabetic macular edema with serous retinal detachment: association with dyslipidemia. Acta Diabetol 57, 861–866 (2020). https://doi.org/10.1007/s00592-020-01495-8

Download citation


  • Diabetic macular edema
  • Dyslipidemia
  • Hyperreflective foci
  • Microglia
  • Triglycerides