Diabetic retinopathy, diabetic macular edema, and cardiovascular risk: the importance of a long-term perspective and a multidisciplinary approach to optimal intravitreal therapy

Abstract

Diabetic retinopathy (DR), diabetic macular edema (DME), and cardiovascular disease (CVD) resulting from vascular damage from persistently elevated blood glucose levels are among the serious secondary pathologies associated with long-standing diabetes mellitus. The established link between DR and CVD suggests the need for appropriate and early management of patients with diabetes to minimize CV risk. This is of particular importance in patients with recent, or a history of, major CV events. Early management of DR is a complex task that requires comprehensive evaluation and a multidisciplinary approach to manage complications, risk factors, and interactions between different aspects of the disease. Anti-vascular endothelial growth factor (VEGF) agents have become an important therapeutic modality in ophthalmology. However, their use is contraindicated in patients with DR and/or DME with a CV event in the previous 3 months. In patients with DME, corticosteroids target the multifaceted inflammatory pathways involved in the pathogenesis of DR, with a broader spectrum of action than anti-VEGF agents. In this context, recent guidelines suggest the use of corticosteroids, and in particular dexamethasone intravitreal implant, as a well-tolerated and efficacious first-line treatment in patients with high CV risk, such as a history of or recent major CV events. This review focuses on the subset of diabetic patients with a prior CV event, DR, and DME and discusses the need for a holistic approach in evaluating the optimal therapeutic choice for the care of the individual patient, supported by real-world clinical experience on long-term dexamethasone intravitreal implant therapy.

This is a preview of subscription content, access via your institution.

Fig. 1

Modified from Schramm et al. [4]

Fig. 2

Modified from Jernberg et al. [19]

Fig. 3

Modified from Avery et al. [34]

Fig. 4

Modified from Avery et al. [34]

Fig. 5

Reproduced from Chen et al. [35]

Data availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. 1.

    International Diabetes Federation (2017) IDF Diabetes Atlas 8th Edition. https://diabetesatlas.org/resources/2017-atlas.html.40-50. Accessed 13 July 2019

  2. 2.

    World Health Organization (WHO) (2016) Global report on diabetes. https://www.who.int/diabetes/global-report/en/. Accessed 13 July 2019

  3. 3.

    Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M (1998) Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 339(4):229–234. https://doi.org/10.1056/NEJM199807233390404

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Schramm TK, Gislason GH, Kober L et al (2008) Diabetes patients requiring glucose-lowering therapy and nondiabetics with a prior myocardial infarction carry the same cardiovascular risk: a population study of 3.3 million people. Circulation 117(15):1945–1954. https://doi.org/10.1161/circulationaha.107.720847

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    World Health Organization (WHO) (2018) Fact sheet: the top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death. Accessed 13 July 2019

  6. 6.

    Brun E, Nelson RG, Bennett PH et al (2000) Diabetes duration and cause-specific mortality in the Verona Diabetes Study. Diabetes Care 23(8):1119–1123. https://doi.org/10.2337/diacare.23.8.1119

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Chen R, Ovbiagele B, Feng W (2016) Diabetes and stroke: epidemiology, pathophysiology, pharmaceuticals and outcomes. Am J Med Sci 351(4):380–386. https://doi.org/10.1016/j.amjms.2016.01.011

    Article  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Piepoli MF, Hoes AW, Agewall S et al (2016) 2016 European Guidelines on cardiovascular disease prevention in clinical practice: the Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur Heart J 37(29):2315–2381. https://doi.org/10.1093/eurheartj/ehw106

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9.

    American Diabetes Association (2019) 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2019. Diabetes Care 42(Suppl 1):S103–S123. https://doi.org/10.2337/dc19-s010

    CAS  Article  Google Scholar 

  10. 10.

    American Diabetes Association (2019) 11. Microvascular complications and foot care: standards of medical care in diabetes-2019. Diabetes Care 42(Suppl 1):S124–S138. https://doi.org/10.2337/dc19-s011

    CAS  Article  Google Scholar 

  11. 11.

    Pearce I, Simó R, Lövestam-Adrian M, Wong DT, Evans M (2019) Association between diabetic eye disease and other complications of diabetes: implications for care. A systematic review. Diabetes Obes Metab 21(3):467–478. https://doi.org/10.1111/dom.13550

    Article  PubMed  Google Scholar 

  12. 12.

    Lee R, Wong TY, Sabanayagam C (2015) Epidemiology of diabetic retinopathy, diabetic macular edema and related vision loss. Eye Vis (Lond) 2:17. https://doi.org/10.1186/s40662-015-0026-2

    Article  Google Scholar 

  13. 13.

    International Council of Ophthalmology (2017) Updated 2017 guidelines for diabetic eye care. http://www.icoph.org/enhancing_eyecare/international_clinical_guidelines.html. Accessed 13 July 2019

  14. 14.

    Simo R, Sundstrom JM, Antonetti DA (2014) Ocular anti-VEGF therapy for diabetic retinopathy: the role of VEGF in the pathogenesis of diabetic retinopathy. Diabetes Care 37(4):893–899. https://doi.org/10.2337/dc13-2002

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Yau JW, Rogers SL, Kawasaki R et al (2012) Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3):556–564. https://doi.org/10.2337/dc11-1909

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Schmidt-Erfurth U, Garcia-Arumi J, Bandello F et al (2017) Guidelines for the management of diabetic macular edema by the European Society of Retina Specialists (EURETINA). Ophthalmologica 237(4):185–222. https://doi.org/10.1159/000458539

    Article  PubMed  Google Scholar 

  17. 17.

    Gerstein HC, Werstuck GH (2013) Dysglycaemia, vasculopenia, and the chronic consequences of diabetes. Lancet Diabetes Endocrinol 1(1):71–78. https://doi.org/10.1016/S2213-8587(13)70025-1

    CAS  Article  PubMed  Google Scholar 

  18. 18.

    Kramer CK, Rodrigues TC, Canani LH, Gross JL, Azevedo MJ (2011) Diabetic retinopathy predicts all-cause mortality and cardiovascular events in both type 1 and 2 diabetes: meta-analysis of observational studies. Diabetes Care 34(5):1238–1244. https://doi.org/10.2337/dc11-0079

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Jernberg T, Hasvold P, Henriksson M, Hjelm H, Thuresson M, Janzon M (2015) Cardiovascular risk in post-myocardial infarction patients: nationwide real world data demonstrate the importance of a long-term perspective. Eur Heart J 36(19):1163–1170. https://doi.org/10.1093/eurheartj/ehu505

    Article  PubMed  Google Scholar 

  20. 20.

    Shoeibi N, Bonakdaran S (2017) Is there any correlation between diabetic retinopathy and risk of cardiovascular disease? Curr Diabetes Rev 13(1):81–86. https://doi.org/10.2174/1573399812666151012115355

    Article  PubMed  Google Scholar 

  21. 21.

    Zhu XR, Zhang YP, Bai L, Zhang XL, Zhou JB, Yang JK (2017) Prediction of risk of diabetic retinopathy for all-cause mortality, stroke and heart failure: evidence from epidemiological observational studies. Medicine (Baltimore) 96(3):e5894. https://doi.org/10.1097/MD.0000000000005894

    Article  Google Scholar 

  22. 22.

    European Medicines Agency (EMA) (2018) Avastin (bevacizumab) Summary of product characteristics. https://www.ema.europa.eu/en/medicines/human/EPAR/avastin#product-information-section. Accessed 13 July 2019

  23. 23.

    Wells JA, Glassman AR, Ayala AR et al (2015) Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med 372(13):1193–1203. https://doi.org/10.1056/NEJMoa1414264

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Wells JA, Glassman AR, Ayala AR et al (2016) Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema: two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology 123(6):1351–1359. https://doi.org/10.1016/j.ophtha.2016.02.022

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    European Medicines Agency (EMA) (2018) Lucentis (ranibizumab) summary of product characteristics. https://www.ema.europa.eu/en/medicines/human/EPAR/lucentis#product-information-section. Accessed 13 July 2019

  26. 26.

    Nguyen QD, Brown DM, Marcus DM et al (2012) Ranibizumab for diabetic macular edema: results from 2 phase III randomized trials: RISE and RIDE. Ophthalmology 119(4):789–801. https://doi.org/10.1016/j.ophtha.2011.12.039

    Article  PubMed  Google Scholar 

  27. 27.

    Brown DM, Nguyen QD, Marcus DM et al (2013) Long-term outcomes of ranibizumab therapy for diabetic macular edema: the 36-month results from two phase III trials: RISE and RIDE. Ophthalmology 120(10):2013–2022. https://doi.org/10.1016/j.ophtha.2013.02.034

    Article  PubMed  Google Scholar 

  28. 28.

    European Medicines Agency (EMA) (2018) Eylea (aflibercept) summary of product characteristics. https://www.ema.europa.eu/en/medicines/human/EPAR/eylea#product-information-section. Accessed 13 July 2019

  29. 29.

    Brown DM, Schmidt-Erfurth U, Do DV et al (2015) Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies. Ophthalmology 122(10):2044–2052. https://doi.org/10.1016/j.ophtha.2015.06.017

    Article  PubMed  Google Scholar 

  30. 30.

    Korobelnik JF, Do DV, Schmidt-Erfurth U et al (2014) Intravitreal aflibercept for diabetic macular edema. Ophthalmology 121(11):2247–2254. https://doi.org/10.1016/j.ophtha.2014.05.006

    Article  PubMed  Google Scholar 

  31. 31.

    Mitchell P, Bandello F, Schmidt-Erfurth U et al (2011) The RESTORE study: ranibizumab monotherapy or combined with laser versus laser monotherapy for diabetic macular edema. Ophthalmology 118(4):615–625. https://doi.org/10.1016/j.ophtha.2011.01.031

    Article  PubMed  Google Scholar 

  32. 32.

    European Medicines Agency (EMA) (2007) Lucentis (ranibizumab) EPAR scientific discussion 2007. https://www.ema.europa.eu/en/documents/scientific-discussion/lucentis-epar-scientific-discussion_en.pdf. Accessed 13 July 2019

  33. 33.

    European Medicines Agency (EMA) (2013) Eylea EAR public assessment report 2013. https://www.ema.europa.eu/en/documents/assessment-report/eylea-epar-public-assessment-report_en.pdf. Accessed 13 July 2019

  34. 34.

    Avery RL, Castellarin AA, Steinle NC et al (2017) Systemic pharmacokinetics and pharmacodynamics of intravitreal aflibercept, bevacizumab, and ranibizumab. Retina 37(10):1847–1858. https://doi.org/10.1097/IAE.0000000000001493

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Chen HX, Cleck JN (2009) Adverse effects of anticancer agents that target the VEGF pathway. Nat Rev Clin Oncol 6(8):465–477. https://doi.org/10.1038/nrclinonc.2009.94

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Avery RL, Gordon GM (2016) Systemic safety of prolonged monthly anti-vascular endothelial growth factor therapy for diabetic macular edema: a systematic review and meta-analysis. JAMA Ophthalmol 134(1):21–29. https://doi.org/10.1001/jamaophthalmol.2015.4070

    Article  PubMed  Google Scholar 

  37. 37.

    Virgili G, Parravano M, Evans JR, Gordon I, Lucenteforte E (2017) Anti-vascular endothelial growth factor for diabetic macular oedema: a network meta-analysis. Cochrane Database Syst Rev 6(6):CD007419. https://doi.org/10.1002/14651858.cd007419.pub5

    Article  PubMed  Google Scholar 

  38. 38.

    Peracha ZH, Rosenfeld PJ (2016) Anti-vascular endothelial growth factor therapy in pregnancy. Retina 36(8):1413–1417. https://doi.org/10.1097/IAE.0000000000001200

    Article  PubMed  Google Scholar 

  39. 39.

    Concillado M, Lund-Andersen H, Mathiesen HR, Larsen M (2016) Dexamethasone intravitreal implant for diabetic macular edema during pregnancy. Am J Ophthalmol 165:7–15. https://doi.org/10.1016/j.ajo.2016.02.004

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Romero-Aroca P, Baget-Bernaldiz M, Pareja-Rios A, Lopez-Galvez M, Navarro-Gil R, Verges R (2016) Diabetic macular edema pathophysiology: vasogenic versus inflammatory. J Diabetes Res 2016:2156273. https://doi.org/10.1155/2016/2156273

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Boyer DS, Yoon YH, Belfort R Jr et al (2014) Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology 121(10):1904–1914. https://doi.org/10.1016/j.ophtha.2014.04.024

    Article  PubMed  Google Scholar 

  42. 42.

    European Medicines Agency (EMA) (2018) Ozurdex (dexamethasone intravitreal implant) summary of product characteristics. https://www.ema.europa.eu/en/medicines/human/EPAR/ozurdex#product-information-section. Accessed 13 July 2019

  43. 43.

    Whitcup SM, Cidlowski JA, Csaky KG, Ambati J (2018) Pharmacology of corticosteroids for diabetic macular edema. Investig Ophthalmol Vis Sci 59(1):1–12. https://doi.org/10.1167/iovs.17-22259

    CAS  Article  Google Scholar 

  44. 44.

    Chang-Lin JE, Attar M, Acheampong AA et al (2011) Pharmacokinetics and pharmacodynamics of a sustained-release dexamethasone intravitreal implant. Investig Ophthalmol Vis Sci 52(1):80–86. https://doi.org/10.1167/iovs.10-5285

    CAS  Article  Google Scholar 

  45. 45.

    Campochiaro PA, Hafiz G, Shah SM et al (2010) Sustained ocular delivery of fluocinolone acetonide by an intravitreal insert. Ophthalmology 117(7):1393–1399. https://doi.org/10.1016/j.ophtha.2009.11.024

    Article  PubMed  Google Scholar 

  46. 46.

    Kiddee W, Trope GE, Sheng L et al (2013) Intraocular pressure monitoring post intravitreal steroids: a systematic review. Surv Ophthalmol 58(4):291–310. https://doi.org/10.1016/j.survophthal.2012.08.003

    Article  PubMed  Google Scholar 

  47. 47.

    Thakur A, Kadam R, Kompella UB (2011) Trabecular meshwork and lens partitioning of corticosteroids: implications for elevated intraocular pressure and cataracts. Arch Ophthalmol 129(7):914–920. https://doi.org/10.1001/archophthalmol.2011.39

    Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Maturi RK, Pollack A, Uy HS et al (2016) Intraocular pressure in patients with diabetic macular edema treated with dexamethasone intravitreal implant in the 3-Year MEAD Study. Retina 36(6):1143–1152. https://doi.org/10.1097/IAE.0000000000001004

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Campochiaro PA, Brown DM, Pearson A et al (2012) Sustained delivery fluocinolone acetonide vitreous inserts provide benefit for at least 3 years in patients with diabetic macular edema. Ophthalmology 119(10):2125–2132. https://doi.org/10.1016/j.ophtha.2012.04.030

    Article  PubMed  Google Scholar 

  50. 50.

    Hosseini K, Matsushima D, Johnson J et al (2008) Pharmacokinetic study of dexamethasone disodium phosphate using intravitreal, subconjunctival, and intravenous delivery routes in rabbits. J Ocul Pharmacol Ther 24(3):301–308. https://doi.org/10.1089/jop.2007.0117

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Gan IM, Ugahary LC, van Dissel JT, van Meurs JC (2005) Effect of intravitreal dexamethasone on vitreous vancomycin concentrations in patients with suspected postoperative bacterial endophthalmitis. Graefes Arch Clin Exp Ophthalmol 243(11):1186–1189. https://doi.org/10.1007/s00417-005-1182-1

    CAS  Article  PubMed  Google Scholar 

  52. 52.

    Weijtens O, Feron EJ, Schoemaker RC et al (1999) High concentration of dexamethasone in aqueous and vitreous after subconjunctival injection. Am J Ophthalmol 128(2):192–197. https://doi.org/10.1016/s0002-9394(99)00129-4

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Weijtens O, Schoemaker RC, Cohen AF et al (1998) Dexamethasone concentration in vitreous and serum after oral administration. Am J Ophthalmol 125(5):673–679. https://doi.org/10.1016/s0002-9394(98)00003-8

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Weijtens O, Schoemaker RC, Romijn FP, Cohen AF, Lentjes EG, van Meurs JC (2002) Intraocular penetration and systemic absorption after topical application of dexamethasone disodium phosphate. Ophthalmology 109(10):1887–1891

    Article  Google Scholar 

  55. 55.

    Weijtens O, van der Sluijs FA, Schoemaker RC et al (1997) Peribulbar corticosteroid injection: vitreal and serum concentrations after dexamethasone disodium phosphate injection. Am J Ophthalmol 123(3):358–363. https://doi.org/10.1016/s0002-9394(14)70131-x

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Bucolo C, Gozzo L, Longo L, Mansueto S, Vitale DC, Drago F (2018) Long-term efficacy and safety profile of multiple injections of intravitreal dexamethasone implant to manage diabetic macular edema: a systematic review of real-world studies. J Pharmacol Sci 138(4):219–232. https://doi.org/10.1016/j.jphs.2018.11.001

    CAS  Article  PubMed  Google Scholar 

  57. 57.

    Rajesh B, Zarranz-Ventura J, Fung AT et al (2019) Safety of 6000 intravitreal dexamethasone implants. Br J Ophthalmol. https://doi.org/10.1136/bjophthalmol-2019-313991

    Article  PubMed  Google Scholar 

  58. 58.

    Moisseiev E, Loewenstein A (2017) Diabetic macular edema: emerging strategies and treatment algorithms. Dev Ophthalmol 60:165–174. https://doi.org/10.1159/000459706

    Article  PubMed  Google Scholar 

  59. 59.

    Callanan DG, Loewenstein A, Patel SS et al (2017) A multicenter, 12-month randomized study comparing dexamethasone intravitreal implant with ranibizumab in patients with diabetic macular edema. Graefes Arch Clin Exp Ophthalmol 255(3):463–473. https://doi.org/10.1007/s00417-016-3472-1

    CAS  Article  PubMed  Google Scholar 

  60. 60.

    Busch C, Zur D, Fraser-Bell S et al (2018) Shall we stay, or shall we switch? Continued anti-VEGF therapy versus early switch to dexamethasone implant in refractory diabetic macular edema. Acta Diabetol 55(8):789–796. https://doi.org/10.1007/s00592-018-1151-x

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Vermeire E, Wens J, Van Royen P, Biot Y, Hearnshaw H, Lindenmeyer A (2005) Interventions for improving adherence to treatment recommendations in people with type 2 diabetes mellitus. Cochrane Database Syst Rev 2(2):CD003638. https://doi.org/10.1002/14651858.cd003638.pub2

    Article  Google Scholar 

  62. 62.

    Claxton AJ, Cramer J, Pierce C (2001) A systematic review of the associations between dose regimens and medication compliance. Clin Ther 23(8):1296–1310

    CAS  Article  Google Scholar 

  63. 63.

    Kruk ME, Schwalbe N (2006) The relation between intermittent dosing and adherence: preliminary insights. Clin Ther 28(12):1989–1995. https://doi.org/10.1016/j.clinthera.2006.12.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Querques L, Parravano M, Sacconi R, Rabiolo A, Bandello F, Querques G (2017) Ischemic index changes in diabetic retinopathy after intravitreal dexamethasone implant using ultra-widefield fluorescein angiography: a pilot study. Acta Diabetol 54(8):769–773. https://doi.org/10.1007/s00592-017-1010-1

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Iglicki M, Zur D, Busch C, Okada M, Loewenstein A (2018) Progression of diabetic retinopathy severity after treatment with dexamethasone implant: a 24-month cohort study the ‘DR-Pro-DEX Study’. Acta Diabetol 55(6):541–547. https://doi.org/10.1007/s00592-018-1117-z

    CAS  Article  PubMed  Google Scholar 

  66. 66.

    Antiplatelet Trialists’ Collaboration (1994) Collaborative overview of randomised trials of antiplatelet therapy–I: prevention of death, myocardial infarction, and stroke by prolonged antiplatelet therapy in various categories of patients. BMJ 308(6921):81–106

    Article  Google Scholar 

Download references

Acknowledgements

We thank Ray Hill, an independent medical writer, who provided English language editing and journal styling prior to submission on behalf of Health Publishing & Services Srl and funded by Allergan SpA, Italy. All authors met the ICMJE authorship criteria. Neither honoraria nor payments were made for authorship.

Author information

Affiliations

Authors

Contributions

All authors contributed to the review conception and design of the literature search. All authors contributed to the drafting and critical revision of the manuscript, commented on previous versions of the manuscript, and read and approved the final manuscript prior to submission.

Corresponding author

Correspondence to Francesco Bandello.

Ethics declarations

Conflict of interest

Francesco Bandello has acted as a consultant for Allergan, Boehringer-Ingelheim, Fidia Sooft, Hoffmann La Roche, Novartis, NTC Pharma, SIFI, Thrombogenics, and Zeiss. Danilo Toni has received honoraria from Bayer, Boehringer Ingelheim, Pfizer, Bristol-Myers Squibb, Daiichi Sankyo, and Medtronic. Massimo Porta has received Advisory Board fees from Novartis, SIFI, and Allergan. Monica Varano has received Advisory Board fees from Novartis, Bayer, SIFI, and Allergan.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the topical collection Eye Complications of Diabetes managed by Giuseppe Querques.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bandello, F., Toni, D., Porta, M. et al. Diabetic retinopathy, diabetic macular edema, and cardiovascular risk: the importance of a long-term perspective and a multidisciplinary approach to optimal intravitreal therapy. Acta Diabetol 57, 513–526 (2020). https://doi.org/10.1007/s00592-019-01453-z

Download citation

Keywords

  • Diabetic retinopathy (DR)
  • Diabetic macular edema (DME)
  • Anti-VEGF (vascular endothelial growth factor) agents
  • Corticosteroids
  • Cardiovascular (CV) risk