Skip to main content

Advertisement

Log in

Widefield optical coherence tomography angiography in diabetic retinopathy

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

To evaluate superficial capillary plexus (SCP), deep capillary plexus (DCP) and choriocapillaris (CC) perfusion in macular and near/mid periphery regions in diabetic patients using widefield swept-source optical coherence tomography angiography (WSS-OCTA).

Methods

Ninety-four diabetic patients (94 eyes) classified as diabetics without diabetic retinopathy (no DR) (25 eyes), mild DR (23 eyes), moderate/severe DR (26 eyes), proliferative DR (20 eyes) and a control group of 25 healthy subjects (25 eyes) were imaged with the WSS-OCTA system (PLEX Elite 9000, Carl Zeiss Meditec Inc., Dublin, CA, USA). Quantitative analysis was performed in the macular and peripheral regions. The main outcome measures were perfusion density (PD) and vessel length density of SCP, DCP and CC.

Results

Peripheral retina (all sectors) showed lower SCP and DCP PD compared to the macular region (p  < 0.001). In diabetics without DR and DR in different stages, SCP and DCP PD significantly decreased at advancing stages of DR (p  < 0.001). At DCP level, central PD was significantly directly related to peripheral PD (superior, R = 0.682 and 0.479; temporal, R  = 0.918 and 0.554; inferior, R  = 0.711). A good sensitivity and an excellent specificity were found in terms of prediction of disease worsening, especially for central and temporal sectors in all plexuses and for all sectors both central and peripheral of DCP.

Conclusions

The widefield OCTA is useful for the study of central and peripheral retina in diabetic patients with or without diabetic retinopathy, assessing good correlation between central and peripheral retina.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Spaide RF, Fujimoto JG, Waheed NK, Sadda SR, Staurenghi G (2018) Optical coherence tomography angiography. Prog Retin Eye Res 64:1–55

    Article  Google Scholar 

  2. Rodríguez FJ, Staurenghi G, Gale R, Vision Academy Steering Spaide RF, Klancnik JM Jr, Cooney MJ (2015) Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. JAMA Ophthalmol 133:45–50

    Article  Google Scholar 

  3. Khadamy J, Abri Aghdam K, Falavarjani KG (2018) An update on optical coherence tomography angiography in diabetic retinopathy. J Ophthalmic Vis Res 13:487–497

    Article  Google Scholar 

  4. Kashani AH, Chen CL, Gahm JK et al (2017) Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res 60:66–100

    Article  Google Scholar 

  5. Scarinci F, Picconi F, Giorno P et al (2018) Deep capillary plexus impairment in patients with type 1 diabetes mellitus with no signs of diabetic retinopathy revealed using optical coherence tomography angiography. Acta Ophthalmol 96:e264–e265

    Article  Google Scholar 

  6. Vujosevic S, Muraca A, Alkabes M et al (2019) Early microvascular and neural changes in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetic retinopathy. Retina 39:435–445

    Article  Google Scholar 

  7. de Carlo TE, Chin AT, Bonini Filho MA et al (2015) Detection of microvascular changes in eyes of patients with diabetes but not clinical diabetic retinopathy using optical coherence tomography angiography. Retina 35:2364–2370

    Article  Google Scholar 

  8. Choi W, Waheed NK, Moult EM et al (2017) Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocapillaris alterations in diabetic patients with and without retinopathy. Retina 37:11–21

    Article  CAS  Google Scholar 

  9. Salz DA, de Carlo TE, Adhi M et al (2016) Select features of diabetic retinopathy on swept-source optical coherence tomographic angiography compared with fluorescein angiography and normal eyes. JAMA Ophthalmol 134:644–650

    Article  Google Scholar 

  10. Agemy SA, Scripsema NK, Shah CM et al (2015) Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina 35:2353–2363

    Article  Google Scholar 

  11. Lee J, Moon BG, Cho AR, Yoon YH (2016) Optical coherence tomography angiography of DME and Its association with anti-VEGF treatment response. Ophthalmology 123:2368–2375

    Article  Google Scholar 

  12. Liu G, Yang J, Wang J et al (2017) Extended axial imaging range, widefield swept source optical coherence tomography angiography. J Biophotonics 10:1464–1472

    Article  Google Scholar 

  13. Sawada O, Ichiyama Y, Obata S et al (2018) Comparison between wide-angle OCT angiography and ultra-wide field fluorescein angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy. Graefe’s Arch Clin Exp Ophthalmol 256:1275–1280

    Article  Google Scholar 

  14. Schaal KB, Munk MR, Wyssmueller I, Berger LE, Zinkernagel MS, Wolf S (2019) Vascular abnormalities in diabetic retinopathy assessed with swept-source optical coherence tomography angiography widefield imaging. Retina 39:79–87

    Article  Google Scholar 

  15. Wu L, Fernandez-Loaiza P, Sauma J, Hernandez-Bogantes E, Masis M (2013) Classification of diabetic retinopathy and diabetic macular edema. World J Diabetes 4:290–294

    Article  Google Scholar 

  16. Uji A, Balasubramanian S, Lei J, Baghdasaryan E, Al-Sheikh M, Sadda SR (2017) Impact of multiple en face image averaging on quantitative assessment from optical coherence tomography angiography images. Ophthalmology 124:944–952

    Article  Google Scholar 

  17. Borrelli E, Lonngi M, Balasubramanian S et al (2019) Macular microvascular networks in healthy pediatric subjects. Retina 39:1216–1224

    Article  Google Scholar 

  18. Spaide RF (2016) Choriocapillaris flow features follow a power law distribution: implications for characterization and mechanisms of disease progression. Am J Ophthalmol 170:58–67

    Article  Google Scholar 

  19. Kim AY, Chu Z, Shahidzadeh A et al (2016) Quantifying microvascular density and morphology in diabetic retinopathy using spectral-domain optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57:OCT362–OCT370

    Article  Google Scholar 

  20. Akil H, Falavarjani KG, Sadda SR, Sadun AA (2017) Optical coherence tomography angiography of the optic disc; an overview. J Ophthalmic Vis Res 12:98–105

    Article  Google Scholar 

  21. Carnevali A, Sacconi R, Corbelli E et al (2017) Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol 54:695–702

    Article  CAS  Google Scholar 

  22. Borrelli E, Palmieri M, Viggiano P, Ferro G, Mastropasqua R (2019) Photoreceptor damage in diabetic choroidopathy. Retina. https://doi.org/10.1097/IAE.0000000000002538

    Article  Google Scholar 

  23. Wessel MM, Aaker GD, Parlitsis G, Cho M, D’Amico DJ, Kiss S (2012) Ultra-wide-field angiography improves the detection and classification of diabetic retinopathy. Retina 32:785–791

    Article  Google Scholar 

  24. Patel RD, Messner LV, Teitelbaum B, Michel KA, Hariprasad SM (2013) Characterization of ischemic index using ultra-widefield fluorescein angiography in patients with focal and diffuse recalcitrant diabetic macular edema. Am J Ophthalmol 155(1038–1044):e1032

    Google Scholar 

  25. Hirano T, Kitahara J, Toriyama Y, Kasamatsu H, Murata T, Sadda S (2019) Quantifying vascular density and morphology using different swept-source optical coherence tomography angiographic scan patterns in diabetic retinopathy. Br J Ophthalmol 103:216–221

    Article  Google Scholar 

  26. Durbin MK, An L, Shemonski ND et al (2017) Quantification of retinal microvascular density in optical coherence tomographic angiography images in diabetic retinopathy. JAMA Ophthalmol 135:370

    Article  Google Scholar 

  27. Campbell JP, Zhang M, Hwang TS et al (2017) Detailed vascular anatomy of the human retina by projection-resolved optical coherence tomography angiography. Sci Rep 10(7):42201

    Article  Google Scholar 

  28. Chan A, Duker JS, Ko TH, Fujimoto JG, Schuman JS (2006) Normal macular thickness measurements in healthy eyes using stratus optical coherence tomography. Arch of Ophthalmol 124:193–198

    Article  Google Scholar 

  29. Jiang J, Liu Y, Chen Y et al (2018) Analysis of changes in retinal thickness in type 2 diabetes without diabetic retinopathy. J Diabetes Res 25(2018):3082893

    Google Scholar 

  30. Sim DA, Keane PA, Rajendram R et al (2014) Patterns of peripheral retinal and central macula ischemia in diabetic retinopathy as evaluated by ultra-widefield fluorescein angiography. Am J Ophthalmol 158:144–153

    Article  Google Scholar 

  31. Or C, Das R, Despotovic I et al. (2019) Combined multimodal analysis of peripheral retinal and macular circulation in diabetic retinopathy (COPRA Study). Ophthalmol Retina 3:580–588

    Article  Google Scholar 

  32. Eladawi N, Elmogy M, Khalifa F et al (2018) Early diabetic retinopathy diagnosis based on local retinal blood vessel analysis in optical coherence tomography angiography (OCTA) images. Med Phys 45:4582–4599

    Article  CAS  Google Scholar 

Download references

Acknowledgements

None.

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rossella D’Aloisio.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee (Ophthalmology Clinic, Department of Medicine and Science of Ageing) and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Managed by Giuseppe Querques.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mastropasqua, R., D’Aloisio, R., Di Antonio, L. et al. Widefield optical coherence tomography angiography in diabetic retinopathy. Acta Diabetol 56, 1293–1303 (2019). https://doi.org/10.1007/s00592-019-01410-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-019-01410-w

Keywords

Navigation