Skip to main content
Log in

Association analysis of copy number variations in type 2 diabetes-related susceptible genes in a Chinese population

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Copy number variations (CNVs) have been implicated as an important genetic marker of common disease. In this study, we explored genetic effects of common CNVs in Type 2 diabetes (T2D) related susceptible genes in Chinese population.

Methods

Seven common CNV loci were selected from genes enclosing the susceptible single nucleotide polymorphisms (SNPs) of T2D confirmed by genome-wide association studies (GWAS) and replication studies conducted in east Asia population. The CNVs and SNPs were genotyped in 504 T2D patients and 494 non-T2D controls. Cumulative effect of the positive CNV loci was measured using genetic risk score (GRS). Multiplicative and additive interaction between candidate CNV loci and SNPs were assessed.

Results

Compared with the common two copies, the deletion of nsv6360 (adjusted OR = 2.28, 95% CI 1.37–3.78, P = 0.001), nsv8414 (adjusted OR = 1.89, 95% CI 1.16–3.08, P = 0.006) and nsv1898 (adjusted OR = 1.84, 95% CI 1.19–2.84, P = 0.005) were significantly associated with increased risk of T2D (P < 0.007). Significant dose–response relationship was observed between GRS and the risk of T2D (χ2 for trend = 19.51, P < 0.001). In addition, significant additive interactions between nsv8414 and rs17584499 in PTPRD (AP = 0.60, 95% CI 0.12–1.07) and nsv1898 and rs16955379 in CMIP (AP = 0.46, 95% CI 0.01–0.91) were observed.

Conclusions

There were three CNV loci (nsv6360, nsv8414 and nsv1898) associated with T2D, and a significant cumulative effect of these loci on the risk of T2D. The comprehensive effects of both CNVs and SNPs may provide a more useful tool for the identification of genetic susceptibility for T2D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Wu Y, Ding Y, Tanaka Y, Zhang W (2014) Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci 11: 1185–1200

    Article  PubMed  PubMed Central  Google Scholar 

  2. Xu Y, Wang L, He J et al (2013) Prevalence and control of diabetes in Chinese adults. JAMA 310: 948–959

    Article  PubMed  CAS  Google Scholar 

  3. Gan W, Walters RG, Holmes MV et al (2016) Evaluation of type 2 diabetes genetic risk variants in Chinese adults: findings from 93,000 individuals from the China Kadoorie Biobank. Diabetologia 59:1446–1457

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Morris AP, Voight BF, Teslovich TM et al (2012) Large-scale association analysis provides insights into the genetic architecture and pathophysiology of type 2 diabetes. Nat Genet 44: 981–990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Eichler EE, Flint J, Gibson G et al (2010) Missing heritability and strategies for finding the underlying causes of complex disease. Nat Rev Genet 11: 446–450

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Redon R, Ishikawa S, Fitch KR et al (2006). Global variation in copy number in the human genome. Nature 444: 444–454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Dajani R, Li J, Wei Z et al (2015) CNV Analysis Associates AKNAD1 with Type-2 Diabetes in Jordan Subpopulations. Sci Rep 5:13391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Jeon JP, Shim SM, Nam HY et al (2010) Copy number variation at leptin receptor gene locus associated with metabolic traits and the risk of type 2 diabetes mellitus. BMC Genom 11:426

    Article  CAS  Google Scholar 

  9. Irvin MR, Wineinger NE, Rice TK et al (2011) Genome-wide detection of allele specific copy number variation associated with insulin resistance in African Americans from the HyperGEN study. PLoS One 6:e24052

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kudo H, Emi M, Ishigaki Y et al (2011) Frequent loss of genome gap region in 4p16.3 subtelomere in early-onset type 2 diabetes mellitus. Exp Diabetes Res 2011:498460

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lee HS, Moon S, Yun JH et al (2014) Genome-wide copy number variation study reveals KCNIP1 as a modulator of insulin secretion. Genomics 104(2):113–120

    Article  PubMed  CAS  Google Scholar 

  12. Stranger BE, Forrest MS, Dunning M et al (2007) Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science 315: 848–853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Plengvidhya N, Chanprasert K, Tangjittipokin W, Thongnoppakhun W, Yenchitsomanus PT (2012) Identification of copy number variation of CAPN10 in Thais with type 2 diabetes by multiplex PCR and denaturing high performance liquid chromatography (DHPLC). Gene 506:383–386

    Article  PubMed  CAS  Google Scholar 

  14. Girirajan S, Campbell CD, Eichler EE (2011) Human copy number variation and complex genetic disease. Annu Rev Genet 45: 203–226

    Article  PubMed  CAS  Google Scholar 

  15. Department of Noncommunicable Disease Surveillance (1999) Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO consultation. Part 1. Diagnosis and classification of diabetes mellitus. World Health Organization, Geneva

    Google Scholar 

  16. Dong J, Liang YZ, Zhang J et al (2017) Potential Role of lipometabolism-related microRNAs in peripheral blood mononuclear cells as biomarkers for coronary artery disease. J Atheroscler Thromb 24: 430–441

    Article  PubMed  PubMed Central  Google Scholar 

  17. Yan YX, Xiao HB, Wang SS et al (2016) Investigation of the relationship between chronic stress and insulin resistance in a Chinese population. J Epidemiol 26:355–360

    Article  PubMed  PubMed Central  Google Scholar 

  18. Wang SS, Li YQ, Liang YZ et al (2017) Expression of miR-18a and miR-34c in circulating monocytes associated with vulnerability to type 2 diabetes mellitus and insulin resistance. J Cell Mol Med 21:3372–3380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Cho YS, Chen CH, Hu C et al (2011) Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians. Nat Genet 44:67–72

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Xiang K, Wang Y, Zheng T et al (2004) Genome-wide search for type 2 diabetes impaired glucose homeostasis susceptibility genes in the Chinese significant linkage to chromosome 6q21-q23 and chromosome 1q21-q24. Diabetes 53: 228–234

    Article  PubMed  CAS  Google Scholar 

  21. Barroso I, Luan J, Sandhu MS et al (2006) Meta-analysis of the Gly482Ser variant in PPARGC1A in type 2 diabetes and related phenotypes. Diabetologia 49:501–505

    Article  PubMed  CAS  Google Scholar 

  22. Du R, Lu C, Jiang Z et al (2012) Efficient typing of copy number variations in a segmental duplication-mediated rearrangement hotspot using multiplex competitive amplification. J Hum Genet 57: 545–551

    Article  PubMed  CAS  Google Scholar 

  23. Andersson T, Alfredsson L, Källberg H et al (2005) Calculating measures of biological interaction. Eur J Epidemiol 20:575–579

    Article  PubMed  Google Scholar 

  24. Källberg H, Ahlbom A, Alfredsson L et al (2006) Calculating measures of biological interaction using R. Eur J Epidemiol 21:571–573

    Article  PubMed  Google Scholar 

  25. Chimienti F, Devergnas S, Pattou F et al (2006) In vivo expression and functional characterization of the zinc transporter ZnT8 in glucose-induced insulin secretion. J Cell Sci 119:4199–206

    Article  PubMed  CAS  Google Scholar 

  26. Cauchi S, Del Guerra S, Choquet H et al (2010) Meta-analysis and functional effects of the SLC30A8 rs13266634 polymorphism on isolated human pancreatic islets. Mol Genet Metab 100:77–82

    Article  PubMed  CAS  Google Scholar 

  27. Perry JR, Frayling TM (2008) New gene variants alter type 2 diabetes risk predominantly through reduced beta-cell function. Curr Opin Clin Nutr Metab Care 11:371–377

    Article  PubMed  CAS  Google Scholar 

  28. Nicolson TJ, Bellomo EA, Wijesekara N et al (2009) Insulin storage and glucose homeostasis in mice null for the granule zinc transporter ZnT8 and studies of the type 2 diabetes-associated variants. Diabetes 58:2070–2083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Flannick J, Thorleifsson G, Beer NL et al (2014). Loss-of-function mutations in SLC30A8 protect against type 2 diabetes. Nat Genet 46: 357–363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Chang YC, Chiu YF, Liu PH et al (2012) Replication of genome-wide association signals of type 2 diabetes in Han Chinese in a prospective cohort. Clin Endocrinol 76: 365–372

    Article  CAS  Google Scholar 

  31. Chen YT, Lin WD, Liao WL et al (2015) PTPRD silencing by DNA hypermethylation decreases insulin receptor signaling and leads to type 2 diabetes. Oncotarget 6: 12997–3005

    PubMed  PubMed Central  Google Scholar 

  32. Dahlman I, Rydén M, Brodin D et al (2016) Numerous genes in loci associated with body fat distribution are linked to adipose function. Diabetes 65:433–437

    Article  PubMed  CAS  Google Scholar 

  33. Sakai K, Imamura M, Tanaka Y et al (2013) Replication study for the association of 9 East Asian GWAS-derived loci with susceptibility to type 2 diabetes in a Japanese population. PLoS One 8:e76317

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Ahlqvist E, Storm P, Käräjämäki A et al (2018) Novel subgroups of adult-onset diabetes and their association with outcomes: a data-driven cluster analysis of six variables. Lancet Diabetes Endocrinol 6:361–369

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation (81573214, 81773511), the Beijing Municipal Natural Science Foundation (7162020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-Xiang Yan or Li-Juan Wu.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Ethical standard

This experiment was approved by the Ethics Committee of Capital Medical University. This study protocol conformed to the ethical guidelines of the 1975 Declaration of Helsinki. All subjects signed informed consent forms.

Human and animal rights

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent

Informed consent was obtained from all patients for being included in the study.

Additional information

Managed by Massimo Porta.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 24 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, YX., Li, JJH., Xiao, HB. et al. Association analysis of copy number variations in type 2 diabetes-related susceptible genes in a Chinese population. Acta Diabetol 55, 909–916 (2018). https://doi.org/10.1007/s00592-018-1168-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-018-1168-1

Keywords

Navigation