Acta Diabetologica

, Volume 55, Issue 7, pp 715–722 | Cite as

Insulin-mimetic effects of short-term rapamycin in type 1 diabetic patients prior to islet transplantation

  • Stefano Benedini
  • Federica Ermetici
  • Silvia Briganti
  • Roberto Codella
  • Ileana Terruzzi
  • Paola Maffi
  • Rossana Caldara
  • Antonio Secchi
  • Rita Nano
  • Lorenzo Piemonti
  • Rodolfo Alejandro
  • Camillo Ricordi
  • Livio Luzi
Original Article



The immunosuppressive drug rapamycin may influence insulin sensitivity in insulin-responsive tissues.


This study aimed at evaluating the effectiveness of rapamycin pre-treatment before pancreatic islet allotransplantation (ITx) in patients with type 1 diabetes mellitus (T1DM).


Forty-one T1DM patients were studied. Thirteen patients with poor glycemic control underwent a short-term rapamycin treatment before ITx (Group 1), and they were compared to 28 patients undergoing ITx without rapamycin pre-treatment (Group 2). Outcomes were daily insulin requirement (DIR), fasting blood glucose, HbA1c, C-peptide and the SUITO index of beta-cell function. A subgroup of patients pre-treated with rapamycin before ITx underwent euglycemic hyperinsulinemic clamp with [6,6-2H2] glucose before and after ITx to evaluate insulin sensitivity.


We found a significant reduction in DIR after rapamycin pre-treatment (− 8 ± 6 U/day, mean ± SD, p < 0.001) and 1 year after ITx. DIR reduction 1 year after ITx was greater in Group 1 as compared to Group 2 (− 37 ± 15 vs. − 19 ± 13 U/day, p = 0.005) and remained significant after adjusting for gender, age, glucose and baseline HbA1c (beta = 18.2 ± 5.9, p = 0.006). Fasting glucose and HbA1c significantly decreased 1 year after ITx in Group 1 (HbA1c: − 2.1 ± 1.4%, p = 0.002), while fasting C-peptide (+0.5 ± 0.3 nmol/l, p = 0.002) and SUITO index increased (+57.4 ± 39.7, p = 0.016), without differences between the two groups. Hepatic glucose production decreased after rapamycin pre-treatment (− 1.1 ± 1.1 mg/kg/min, p = 0.04) and after ITx (− 1.6 ± 0.6 mg/kg/min, p = 0.015), while no changes in peripheral glucose disposal were observed.


Rapamycin pre-treatment before ITx succeeds in reducing insulin requirement, enhancing hepatic insulin sensitivity. This treatment may improve short-term ITx outcomes, possibly in selected patients with T1DM complicated by insulin resistance.

Clinical Trial NCT01060605; NCT00014911.


Pancreatic islet allotransplantation Insulin sensitivity C-peptide Euglycemic hyperinsulinemic clamp mTOR 



Body mass index


Daily insulin requirement


Gas chromatography–mass spectrometry




Islet transplantation


The mechanistic target of rapamycin


mTOR complex


Standard deviation


Standard error


Secretory Unit of Islet Transplantation Objects


Type 1 diabetes mellitus



This work was funded by Telethon-JDRF JT01Y01.

Compliance with ethical standards

Conflict of interest

The authors declare no conflicts of interest.

Human and animal rights disclosure

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008.

Informed consent disclosure

Informed consent was obtained from all patients for being included in the study.


  1. 1.
    Shapiro AM, Pokrywczynska M, Ricordi C (2017) Clinical pancreatic islet transplantation. Nat Rev Endocrinol 13:268–277CrossRefPubMedGoogle Scholar
  2. 2.
    Codella R, Adamo M, Maffi P, Piemonti L, Secchi A, Luzi L (2017) Ultra-marathon 100 km in an islet-transplanted runner. Acta Diabetol 54:703–706CrossRefPubMedGoogle Scholar
  3. 3.
    Pellegrini S, Cantarelli E, Sordi V, Nano R, Piemonti L (2016) The state of the art of islet transplantation and cell therapy in type 1 diabetes. Acta Diabetol 53:683–691CrossRefPubMedGoogle Scholar
  4. 4.
    Fiorina P, Folli F, Bertuzzi F et al (2003) Long-term beneficial effect of islet transplantation on diabetic macro-/microangiopathy in type 1 diabetic kidney-transplanted patients. Diabetes Care 26(4):1129–1136CrossRefPubMedGoogle Scholar
  5. 5.
    Fiorina P, Folli F, Maffi P et al (2003) Islet transplantation improves vascular diabetic complications in patients with diabetes who underwent kidney transplantation: a comparison between kidney-pancreas and kidney-alone transplantation. Transplantation 75(8):1296–1301CrossRefPubMedGoogle Scholar
  6. 6.
    Shapiro AM, Lakey JR, Ryan EA et al (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343:230–238CrossRefPubMedGoogle Scholar
  7. 7.
    Benedini S, Ruffini E, Terruzzi I, Mancuso M, Luzi L (2008) Glucose and leucine metabolism in lung transplanted patients on low dose of steroids for immunosuppressive therapy. Transplant Proc 40:1566–1571CrossRefPubMedGoogle Scholar
  8. 8.
    Shapiro AM, Ricordi C, Hering BJ et al (2006) International trial of the Edmonton protocol for islet transplantation. N Engl J Med 355:1318–1330CrossRefPubMedGoogle Scholar
  9. 9.
    Shimobayashi M, Hall MN (2014) Making new contacts: the mTOR network in metabolism and signalling crosstalk. Nat Rev Mol Cell Biol 15:155–162CrossRefPubMedGoogle Scholar
  10. 10.
    Um SH, D’Alessio D, Thomas G (2006) Nutrient overload, insulin resistance, and ribosomal protein S6 kinase 1, S6K1. Cell Metab 3:393–402CrossRefPubMedGoogle Scholar
  11. 11.
    Shigeyama Y, Kobayashi T, Kido Y et al (2008) Biphasic response of pancreatic beta-cell mass to ablation of tuberous sclerosis complex 2 in mice. Mol Cell Biol 28:2971–2979CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Yu Y, Yoon SO, Poulogiannis G et al (2011) Phosphoproteomic analysis identifies Grb10 as an mTORC1 substrate that negatively regulates insulin signaling. Science 332:1322–1326CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hsu PP, Kang SA, Rameseder J et al (2011) The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling. Science 332:1317–1322CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Laplante M, Sabatini DM (2012) mTOR signaling in growth control and disease. Cell 149:274–293CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Luzi L, Hering BJ, Socci C et al (1996) Metabolic effects of successful intraportal islet transplantation in insulin-dependent diabetes mellitus. J Clin Invest 97:2611–2618CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Takita M, Matusmoto S (2012) SUITO index for evaluation of clinical islet transplantation. Cell Transplant 21:1341–1347CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Benedini S, Fiocchi R, Battezzati A et al (2002) Energy metabolism in diabetic and nondiabetic heart transplant recipients. Diabetes Care 25:530–536CrossRefPubMedGoogle Scholar
  18. 18.
    Steele R (1959) Influences of glucose loading and of injected insulin on hepatic glucose output. Ann N Y Acad Sci 82:420–430CrossRefPubMedGoogle Scholar
  19. 19.
    Collaborative Islet Transplant Registry. Eighth annual report. CITR 2014 Accessed 8 Dec 2016
  20. 20.
    D’Addio F, Maffi P, Vezzulli P et al (2014) Islet transplantation stabilizes hemostatic abnormalities and cerebral metabolism in individuals with type 1 diabetes. Diabetes Care 37(1):267–276CrossRefPubMedGoogle Scholar
  21. 21.
    Fiorina P, Gremizzi C, Maffi P et al (2005) Islet transplantation is associated with an improvement of cardiovascular function in type 1 diabetic kidney transplant patients. Diabetes Care 28(6):1358–1365CrossRefPubMedGoogle Scholar
  22. 22.
    Matsumoto S, Takita M, Chaussabel D et al (2011) Improving efficacy of clinical islet transplantation with iodixanol-based islet purification, thymoglobulin induction, and blockage of IL-1β and TNF-α. Cell Transplant 20:1641–1647CrossRefPubMedGoogle Scholar
  23. 23.
    Citro A, Cantarelli E, Maffi P et al (2012) CXCR1/2 inhibition enhances pancreatic islet survival after transplantation. J Clin Invest 122:3647–3651CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Rachdi L, Balcazar N, Osorio-Duque F et al (2008) Disruption of Tsc2 in pancreatic beta cells induces beta cell mass expansion and improved glucose tolerance in a TORC1-dependent manner. Proc Natl Acad Sci USA 105:9250–9255CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pende M, Kozma SC, Jaquet M et al (2000) Hypoinsulinaemia, glucose intolerance and diminished beta-cell size in S6K1-deficient mice. Nature 408:994–997CrossRefPubMedGoogle Scholar
  26. 26.
    Gu Y, Lindner J, Kumar A, Yuan W, Magnuson MA (2011) Rictor/mTORC2 is essential for maintaining a balance between beta-cell proliferation and cell size. Diabetes 60:827–837CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor/mTOR complex. Science 307:1098–1101CrossRefPubMedGoogle Scholar
  28. 28.
    Lamming DW, Ye L, Katajisto P et al (2012) Rapamycin-induced insulin resistance is mediated by mTORC2 loss and uncoupled from longevity. Science 335:1638–1643CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Li J, Kim SG, Blenis J (2014) Rapamycin: one drug, many effects. Cell Metab 19:373–379CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Krebs M, Brunmair B, Brehm A et al (2007) The mammalian target of rapamycin pathway regulates nutrient-sensitive glucose uptake in man. Diabetes 56:1600–1607CrossRefPubMedGoogle Scholar
  31. 31.
    Fraenkel M, Ketzinel-Gilad M, Ariav Y et al (2008) mTOR inhibition by rapamycin prevents beta-cell adaptation to hyperglycemia and exacerbates the metabolic state in type 2 diabetes. Diabetes 57:945–957CrossRefPubMedGoogle Scholar
  32. 32.
    Houde VP, Brule S, Festuccia WT et al (2010) Chronic rapamycin treatment causes glucose intolerance and hyperlipidemia by upregulating hepatic gluconeogenesis and impairing lipid deposition in adipose tissue. Diabetes 59:1338–1348CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Johnston O, Rose CL, Webster AC, Gill JS (2008) Sirolimus is associated with new-onset diabetes in kidney transplant recipients. J Am Soc Nephrol 19:1411–1418CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Piemonti L, Maffi P, Monti L et al (2011) Beta cell function during rapamycin monotherapy in long-term type 1 diabetes. Diabetologia 54:433–439CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  • Stefano Benedini
    • 1
    • 2
  • Federica Ermetici
    • 1
  • Silvia Briganti
    • 1
  • Roberto Codella
    • 2
  • Ileana Terruzzi
    • 3
  • Paola Maffi
    • 4
  • Rossana Caldara
    • 4
  • Antonio Secchi
    • 4
    • 6
  • Rita Nano
    • 4
  • Lorenzo Piemonti
    • 4
    • 6
  • Rodolfo Alejandro
    • 5
  • Camillo Ricordi
    • 5
  • Livio Luzi
    • 1
    • 2
  1. 1.Endocrinology and MetabolismIRCCS Policlinico San DonatoSan Donato Milanese (Milan)Italy
  2. 2.Department of Biomedical Sciences for HealthUniversità degli Studi di MilanoMilanItaly
  3. 3.Diabetes Research Institute, Metabolism, Nutrigenomics and Cellular Differentiation UnitSan Raffaele Scientific InstituteMilanItaly
  4. 4.Department of Internal Medicine, Transplant Medicine UnitSan Raffaele Scientific InstituteMilanItaly
  5. 5.Diabetes Research InstituteUniversity of Miami Miller School of MedicineMiamiUSA
  6. 6.Vita Salute San Raffaele UniversityMilanItaly

Personalised recommendations