Acta Diabetologica

, Volume 55, Issue 6, pp 519–529 | Cite as

The 1-h post-load plasma glucose as a novel biomarker for diagnosing dysglycemia

  • Ram Jagannathan
  • Martin Buysschaert
  • José Luis Medina
  • Karin Katz
  • Sarah Musleh
  • Brenda Dorcely
  • Michael Bergman
Review Article


Identifying the earliest moment for intervention to avert progression to prediabetes and diabetes in high-risk individuals is a substantial challenge. As β-cell function is already compromised in prediabetes, attention should therefore be focused on identifying high-risk individuals earlier in the so-called pre-prediabetes stage. Biomarkers to monitor progression and identify the time point at which β-cell dysfunction occurs are therefore critically needed. Large-scale population studies have consistently shown that the 1-h plasma glucose (1-h PG) ≥ 155 mg/dl (8.6 mmol/l) during the oral glucose tolerance test detected incident type 2 diabetes and associated complications earlier than fasting plasma glucose or 2-h plasma glucose levels. An elevated 1-h PG level appears to be a better alternative to HbA1c [5.7–6.4% (37–47 mmol/mol)] or traditional glucose criteria for identifying high-risk individuals at a stage when ß-cell function is substantially more intact than in prediabetes. Diagnosing high-risk individuals earlier proffers the opportunity for potentially reducing progression to diabetes, development of microvascular complications and mortality, thereby advancing benefit beyond that which has been demonstrated in global diabetes prevention programs.


Dysglycemia Prediabetes Diabetes Oral glucose tolerance test 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This article does not contain any studies with human subjects performed by any of the authors.

Informed consent

Informed consent not applicable.


  1. 1.
  2. 2.
    Gregg EW, Zhuo X, Cheng YJ, Albright AL, Venkat Narayan KM, Thompson TJ (2014) Trends in lifetime risk and years of life lost due to diabetes in the USA, 1985–2011: a modeling study. Lancet Diabetes Endocrinol 2:867–874CrossRefPubMedGoogle Scholar
  3. 3.
    Herman WH, Ye W, Griffin SJ et al (2015) Early detection and treatment of type 2 diabetes reduce cardiovascular morbidity and mortality: a simulation of the results of the Anglo-Danish-Dutch study of intensive treatment in people with screen-detected diabetes in primary care (ADDITION-Europe). Diabetes Care 38:1449–1455CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    The Diabetes Prevention Program Research Group (2012) The 10-year cost-effectiveness of lifestyle intervention or metformin for diabetes prevention. An intent-to-treat analysis of the DPP/DPPOS. Diabetes Care 35:723–730CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Ali MK, Bullard KM, Gregg EW, del Rio C (2014) A cascade of care for diabetes in the United States: visualizing the gaps. Ann Int Med 161(10):681–689CrossRefPubMedGoogle Scholar
  6. 6.
    Makaroff LE (2017) The need for international consensus on prediabetes. Lancet Diabetes Endocrinol 5(1):5–7CrossRefPubMedGoogle Scholar
  7. 7.
    American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(supplement 1):S81–S90CrossRefGoogle Scholar
  8. 8.
    International Expert Committee (2009) International Expert Committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes care 32(7):1327–1334CrossRefGoogle Scholar
  9. 9.
    American Diabetes Association (2010) Diagnosis and classification of diabetes mellitus. Diabetes Care 33(Supplement 1):S62–S69CrossRefPubMedCentralGoogle Scholar
  10. 10.
    World Health Organization (2011) Use of glycated haemoglobin (HbA1c) in diagnosis of diabetes mellitus: abbreviated report of a WHO consultationGoogle Scholar
  11. 11.
    Herman WH, Cohen RM (2012) Racial and ethnic differences in the relationship between HbA1c and blood glucose: implications for the diagnosis of diabetes. J Clin Endocrinol Metab 97(4):1067–1072CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Olson DE, Rhee MK, Herrick K, Ziemer DC, Twombly JG, Phillips LS (2010) Screening for diabetes and pre-diabetes with proposed A1C-based diagnostic criteria. Diabetes Care 33(10):2184–2189CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Warren B, Pankow JS, Punjabi NM et al (2017) Comparative prognostic performance of definitions of prediabetes: a prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endcorinol 5:34–42CrossRefGoogle Scholar
  14. 14.
    Halban PA, Polonsky KS, Bowden DW et al (2014) β-cell failure in type 2 diabetes: postulated mechanisms and prospects for prevention and treatment. Diabetes Care 37(6):1751–1758CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Zimmet PZ (1992) Kelly West Lecture 1991 challenges in diabetes epidemiology—from West to the rest. Diabetes Care 15(2):232–252CrossRefPubMedGoogle Scholar
  16. 16.
    Lorenzo C, Williams K, Haffner S (2012) Insulin secretion based on the late oral glucose tolerance test period and incident diabetes: the San Antonio Heart Study. Diabet Med 29(8):e151–e158CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hanson RL, Pratley RE, Bogardus C et al (2000) Evaluation of simple indices of insulin sensitivity and insulin secretion for use in epidemiologic studies. Am J Epidemiol 151(2):190–198CrossRefPubMedGoogle Scholar
  18. 18.
    Jagannathan R, Sevick MA, Li H et al (2016) Elevated 1-hour plasma glucose levels are associated with dysglycemia, impaired beta-cell function, and insulin sensitivity: a pilot study from a real world health care setting. Endocrine 52(1):172–175CrossRefPubMedGoogle Scholar
  19. 19.
    Bergman M, Dankner R, Roth J, Narayan KV (2013) Are current diagnostic guidelines delaying early detection of dysglycemic states? Time for new approaches. Endocrine 44(1):66–69CrossRefPubMedGoogle Scholar
  20. 20.
    Skyler JS, Bakris GL, Bonifacio E et al (2017) Differentiation of diabetes by pathophysiology, natural history, and prognosis. Diabetes 66(2):241–255CrossRefPubMedGoogle Scholar
  21. 21.
    Tabák AG, Jokela M, Akbaraly TN, Brunner EJ, Kivimäki M, Witte DR (2009) Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: an analysis from the Whitehall II study. Lancet 373(9682):2215–2221CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Perreault L, Pan Q, Mather KJ et al (2012) Effect of regression from prediabetes to normal glucose regulation on long-term reduction in diabetes risk: results from the Diabetes Prevention Program Outcomes study. Lancet 379(9833):2243–2251CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Bergman M (2010) Inadequacies of absolute threshold levels for diagnosing prediabetes. Diabetes/Metab Res Rev 26(1):3–6CrossRefGoogle Scholar
  24. 24.
    Abdul-Ghani MA, Abdul-Ghani T, Ali N, Defronzo RA (2008) One-hour plasma glucose concentration and the metabolic syndrome identify subjects at high risk for future type 2 diabetes. Diabetes Care 31(8):1650–1655CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Alyass A, Almgren P, Akerlund M et al (2015) Modelling of OGTT curve identifies 1 h plasma glucose level as a strong predictor of incident type 2 diabetes: results from two prospective cohorts. Diabetologia 58(1):87–97CrossRefPubMedGoogle Scholar
  26. 26.
    Fiorentino TV, Marini MA, Andreozzi F et al (2015) One-hour postload hyperglycemia is a stronger predictor of type 2 diabetes than impaired fasting glucose. J Clin Endocrinol Metab 100(10):3744–3751CrossRefPubMedGoogle Scholar
  27. 27.
    Succurro E, Arturi F, Lugara M et al (2010) One-hour postload plasma glucose levels are associated with kidney dysfunction. Clin J Am Soc Nephrol 5(11):1922–1927CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Sesti G, Hribal ML, Fiorentino TV, Sciacqua A, Perticone F (2014) Elevated 1 h postload plasma glucose levels identify adults with normal glucose tolerance but increased risk of non-alcoholic fatty liver disease. BMJ Open Diabetes Res Care 2(1):e000016CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sciacqua A, Maio R, Miceli S et al (2012) Association between one-hour post-load plasma glucose levels and vascular stiffness in essential hypertension. PLoS One 7(9):e44470CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Succurro E, Arturi F, Grembiale A et al (2011) One-hour post-load plasma glucose levels are associated with elevated liver enzymes. Nutr Metab Cardiovasc Dis 21(9):713–718CrossRefPubMedGoogle Scholar
  31. 31.
    Andreozzi F, Mannino GC, Perticone M, Perticone F, Sesti G (2016) Elevated 1-h post-load plasma glucose levels in subjects with normal glucose tolerance are associated with a pro-atherogenic lipid profile. Atherosclerosis 256:15–20CrossRefPubMedGoogle Scholar
  32. 32.
    Fiorentino TV, Sesti F, Andreozzi F et al (2016) One-hour post-load hyperglycemia combined with HbA1c identifies pre-diabetic individuals with a higher cardio-metabolic risk burden. Atherosclerosis 253:61–69CrossRefPubMedGoogle Scholar
  33. 33.
    Sciacqua A, Perticone M, Grillo N et al (2014) Vitamin D and 1-h post-load plasma glucose in hypertensive patients. Cardiovasc Diabetol 13:48CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Marini MA, Frontoni S, Succurro E et al (2013) Decreased insulin clearance in individuals with elevated 1-h post-load plasma glucose levels. PLoS One 8(10):e77440CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Marini MA, Succurro E, Frontoni S et al (2012) Insulin sensitivity, beta-cell function, and incretin effect in individuals with elevated 1-h postload plasma glucose levels. Diabetes Care 35(4):868–872CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Sesti G, Fiorentino TV, Succurro E et al (2014) Elevated 1-h post-load plasma glucose levels in subjects with normal glucose tolerance are associated with unfavorable inflammatory profile. Acta Diabetol 51(6):927–932CrossRefPubMedGoogle Scholar
  37. 37.
    Jagannathan R, Sevick MA, Fink D, et al (2016) The 1-hour post-load glucose level is more effective than HbA1c for screening dysglycemia. Acta Diabetol 53:543–550CrossRefPubMedGoogle Scholar
  38. 38.
    Bergman M, Chetrit A, Roth J, Jagannathan R, Sevick M, Dankner R (2016) One-hour post-load plasma glucose level during the OGTT predicts dysglycemia: observations from the 24 year follow-up of the Israel study of glucose intolerance, obesity and hypertension. Diabetes Res Clin Pract 120:221–228CrossRefPubMedGoogle Scholar
  39. 39.
    Bergman M, Chetrit A, Roth J, Dankner R (2016) One-hour post-load plasma glucose level during the OGTT predicts mortality: observations from the Israel study of glucose intolerance, obesity and hypertension. Diabetic Med. PubMedCrossRefGoogle Scholar
  40. 40.
    Pareek M, Bhatt DL, Nielsen ML et al (2017) Cardiovascular and metabolic risk—enhanced predictive capability of a 1-hour oral glucose tolerance test: a prospective population-based cohort study. Diabetes Care. PubMedCrossRefGoogle Scholar
  41. 41.
    Dorcely B, Katz K, Jagannathan R et al (2017) Novel biomarkers for prediabetes, diabetes, and associated complications. Diabetes Metab Syndr Obes 10:345–361CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Vaccaro O, Ruth KJ, Stamler J (1992) Relationship of postload plasma glucose to mortality with 19-year follow-up. Comparison of one versus two plasma glucose measurements in the Chicago Peoples Gas Company Study. Diabetes Care 15(10):1328–1334CrossRefPubMedGoogle Scholar
  43. 43.
    Cubeddu LX, Hoffmann IS (2010) One-hour postload plasma glucose levels, a predictor of additional risk for diabetes: prevalence, mechanisms, and associated cardiovascular and metabolic risk factors in Hispanics. Metab Syndr Relat Disord 8(5):395–402CrossRefPubMedGoogle Scholar
  44. 44.
    Manco M, Panunzi S, Macfarlane DP et al (2010) One-hour plasma glucose identifies insulin resistance and beta-cell dysfunction in individuals with normal glucose tolerance: cross-sectional data from the Relationship between insulin sensitivity and cardiovascular risk (RISC) study. Diabetes Care 33(9):2090–2097CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Marini MA, Fiorentino TV, Andreozzi F et al (2017) Elevated 1-h post-challenge plasma glucose levels in subjects with normal glucose tolerance or impaired glucose tolerance are associated with whole blood viscosity. Acta Diabetol 54(8):775–784CrossRefPubMedGoogle Scholar
  46. 46.
    Strandberg TE, Pienimaki T, Strandberg AY et al (2011) One-hour glucose, mortality, and risk of diabetes: a 44-year prospective study in men. Arch Intern Med 171(10):941–943CrossRefPubMedGoogle Scholar
  47. 47.
    Priya M, Anjana RM, Chiwanga FS, Gokulakrishnan K, Deepa M, Mohan V (2013) 1-hour venous plasma glucose and incident prediabetes and diabetes in Asian indians. Diabetes Technol Ther 15(6):497–502CrossRefPubMedGoogle Scholar
  48. 48.
    Priya MM, Amutha A, Pramodkumar TA et al (2016) Beta-cell function and insulin sensitivity in normal glucose-tolerant subjects stratified by 1-hour plasma glucose values. Diabetes Technol Ther 18(1):29–33CrossRefPubMedGoogle Scholar
  49. 49.
    Kim JY, Goran MI, Toledo-Corral CM, Weigensberg MJ, Choi M, Shaibi GQ (2013) One-hour glucose during an oral glucose challenge prospectively predicts beta-cell deterioration and prediabetes in obese Hispanic youth. Diabetes Care 36(6):1681–1686CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Oh TJ, Min SH, Ahn CH et al (2015) Normal glucose tolerance with a high 1-hour postload plasma glucose level exhibits decreased beta-cell function similar to impaired glucose tolerance. Diabetes Metab J 39(2):147–153CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Oh TJ, Lim S, Kim KM et al (2017) One-hour postload plasma glucose concentration in people with normal glucose homeostasis predicts future diabetes mellitus: a 12-year community-based cohort study. Clin Endocrinol (Oxf) 86(4):513–519CrossRefGoogle Scholar
  52. 52.
    Paddock E, Hohenadel MG, Piaggi P et al (2017) One-hour and two-hour postload plasma glucose concentrations are comparable predictors of type 2 diabetes mellitus in Southwestern Native Americans. Diabetologia 60:1704–1711CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2018

Authors and Affiliations

  • Ram Jagannathan
    • 1
  • Martin Buysschaert
    • 2
  • José Luis Medina
    • 3
  • Karin Katz
    • 4
  • Sarah Musleh
    • 4
  • Brenda Dorcely
    • 4
  • Michael Bergman
    • 4
  1. 1.Hubert Department of Global Health, Rollins School of Public HealthEmory UniversityAtlantaUSA
  2. 2.Department of Endocrinology and DiabetologyUniversité Catholique de Louvain, University Clinic Saint-LucBrusselsBelgium
  3. 3.Oporto Medical SchoolOporto UniversityOportoPortugal
  4. 4.NYU Langone Diabetes Prevention Program, Division of Endocrinology and Metabolism, Department of MedicineNYU School of MedicineNew YorkUSA

Personalised recommendations