Advertisement

Acta Diabetologica

, Volume 55, Issue 5, pp 405–418 | Cite as

Advances in micro- and nanotechnologies for the GLP-1-based therapy and imaging of pancreatic beta-cells

  • Faruk H. Moonschi
  • Corey B. Hughes
  • George M. Mussman
  • John L. Fowlkes
  • Chris I. Richards
  • Iuliana Popescu
Review Article

Abstract

Therapies to prevent diabetes in particular the progressive loss of β-cell mass and function and/or to improve the dysregulated metabolism associated with diabetes are highly sought. The incretin-based therapy comprising GLP-1R agonists and DPP-4 inhibitors have represented a major focus of pharmaceutical R&D over the last decade. The incretin hormone GLP-1 has powerful antihyperglycemic effect through direct stimulation of insulin biosynthesis and secretion within the β-cells; it normalizes β-cell sensitivity to glucose, has an antiapoptotic role, stimulates β-cell proliferation and differentiation, and inhibits glucagon secretion. However, native GLP-1 therapy is inappropriate due to the rapid post-secretory inactivation by DPP-4. Therefore, incretin mimetics developed on the backbone of the GLP-1 or exendin-4 molecule have been developed to behave as GLP-1R agonists but to display improved stability and clinical efficacy. New formulations of incretins and their analogs based on micro- and nanomaterials (i.e., PEG, PLGA, chitosan, liposomes and silica) and innovative encapsulation strategies have emerged to achieve a better stability of the incretin, to improve its pharmacokinetic profile, to lower the administration frequency or to allow another administration route and to display fewer adverse effects. An important advantage of these formulations is that they can also be used at the targeted non-invasive imaging of the beta-cell mass. This review therefore focuses on the current state of these efforts as the next step in the therapeutic evolution of this class of antidiabetic drugs.

Keywords

Microparticles Nanoparticles Incretins GLP-1 Beta-cell Diabetes 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Supplementary material

592_2017_1086_MOESM1_ESM.pdf (127 kb)
Supplementary material 1 Molecular structures of the human GLP-1(7-37) (a) and GLP-1 analogs (b–g) approved on the market, modified after Manandhar B [61] Nauck M [64] and Glaesner W [65]. (b) Exenatide; (c) lixisenatide; (d) liraglutide; e) semaglutide; (f) albiglutide; (g) dulaglutide. The colors identify differences between the amino acid sequence or/and other moieties within the peptide structure (PDF 128 kb)

References

  1. 1.
    Auffan M, Rose J, Bottero J-Y, Lowry GV, Jolivet J-P, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nano 4(10):634–641CrossRefGoogle Scholar
  2. 2.
    Araújo F, Shrestha N, Gomes M et al (2016) In vivo dual-delivery of glucagon like peptide-1 (GLP-1) and dipeptidyl peptidase-4 (DPP4) inhibitor through composites prepared by microfluidics for diabetes therapy. Nanoscale 8(20):10706PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Singh R, Lillard JW Jr (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223.  https://doi.org/10.1016/j.yexmp.2008.12.004 PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kohane DS (2007) Microparticles and nanoparticles for drug delivery. Biotechnol Bioeng 96(2):203–209.  https://doi.org/10.1002/bit.21301 PubMedCrossRefGoogle Scholar
  5. 5.
    Aslan B, Ozpolat B, Sood AK, Lopez-Berestein G (2013) Nanotechnology in cancer therapy. J Drug Target 21(10):904–913.  https://doi.org/10.3109/1061186x.2013.837469 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kohane DS, Tse JY, Yeo Y, Padera R, Shubina M, Langer R (2006) Biodegradable polymeric microspheres and nanospheres for drug delivery in the peritoneum. J Biomed Mater Res A 77(2):351–361.  https://doi.org/10.1002/jbm.a.30654 PubMedCrossRefGoogle Scholar
  7. 7.
    Desai MP, Labhasetwar V, Walter E, Levy RJ, Amidon GL (1997) The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent. Pharm Res 14(11):1568–1573PubMedCrossRefGoogle Scholar
  8. 8.
    Meier JJ, Breuer TG, Bonadonna RC et al (2012) Pancreatic diabetes manifests when beta cell area declines by approximately 65% in humans. Diabetologia 55(5):1346–1354.  https://doi.org/10.1007/s00125-012-2466-8 PubMedCrossRefGoogle Scholar
  9. 9.
    Rahier J, Guiot Y, Goebbels RM, Sempoux C, Henquin JC (2008) Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab 10(Suppl 4):32–42.  https://doi.org/10.1111/j.1463-1326.2008.00969.x PubMedCrossRefGoogle Scholar
  10. 10.
    Nauck MSF, Ebert R, Creutzfeldt W (1986) Reduced incretin effect in type 2 (non-insulin-dependent) diabetes. Diabetologia 29:46–52PubMedCrossRefGoogle Scholar
  11. 11.
    Drucker DJ, Philippe J, Mojsov S, Chick WL, Habener JF (1987) Glucagon-like peptide I stimulates insulin gene expression and increases cyclic AMP levels in a rat islet cell line. Proc Natl Acad Sci USA 84(10):3434–3438PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Nauck MA, Heimesaat MM, Orskov C, Holst JJ, Ebert R, Creutzfeldt W (1993) Preserved incretin activity of glucagon-like peptide 1 [7-36 amide] but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Investig 91(1):301–307.  https://doi.org/10.1172/jci116186 PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Campbell JE, Drucker DJ (2013) Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metab 17(6):819–837.  https://doi.org/10.1016/j.cmet.2013.04.008 PubMedCrossRefGoogle Scholar
  14. 14.
    Drucker DJ (2016) The cardiovascular biology of glucagon-like peptide-1. Cell Metab 24(1):15–30.  https://doi.org/10.1016/j.cmet.2016.06.009 PubMedCrossRefGoogle Scholar
  15. 15.
    Cantini G, Mannucci E, Luconi M (2016) Perspectives in GLP-1 research: new targets, new receptors. Trends Endocrinol Metab 27(6):427–438.  https://doi.org/10.1016/j.tem.2016.03.017 PubMedCrossRefGoogle Scholar
  16. 16.
    Werner U, Haschke G, Herling AW, Kramer W (2010) Pharmacological profile of lixisenatide: a new GLP-1 receptor agonist for the treatment of type 2 diabetes. Regul Pept 164(2–3):58–64.  https://doi.org/10.1016/j.regpep.2010.05.008 PubMedCrossRefGoogle Scholar
  17. 17.
    Agerso H, Jensen LB, Elbrond B, Rolan P, Zdravkovic M (2002) The pharmacokinetics, pharmacodynamics, safety and tolerability of NN2211, a new long-acting GLP-1 derivative, in healthy men. Diabetologia 45(2):195–202.  https://doi.org/10.1007/s00125-001-0719-z PubMedCrossRefGoogle Scholar
  18. 18.
    Nauck MA, Petrie JR, Sesti G et al (2016) A phase 2, randomized, dose-finding study of the novel once-weekly human GLP-1 analog, semaglutide, compared with placebo and open-label liraglutide in patients with type 2 diabetes. Diabetes Care 39(2):231–241.  https://doi.org/10.2337/dc15-0165 PubMedGoogle Scholar
  19. 19.
    Cai Y, Wei L, Ma L et al (2013) Long-acting preparations of exenatide. Drug Des Dev Ther 7:963–970.  https://doi.org/10.2147/dddt.s46970 Google Scholar
  20. 20.
    Baggio LL, Huang Q, Cao X, Drucker DJ (2008) An albumin-exendin-4 conjugate engages central and peripheral circuits regulating murine energy and glucose homeostasis. Gastroenterology 134(4):1137–1147.  https://doi.org/10.1053/j.gastro.2008.01.017 PubMedCrossRefGoogle Scholar
  21. 21.
  22. 22.
  23. 23.
  24. 24.
    DeYoung MB, MacConell L, Sarin V, Trautmann M, Herbert P (2011) Encapsulation of exenatide in poly-(d, l-lactide-co-glycolide) microspheres produced an investigational long-acting once-weekly formulation for type 2 diabetes. Diabetes Technol Ther 13(11):1145–1154.  https://doi.org/10.1089/dia.2011.0050 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
  26. 26.
    Araújo F, Shrestha N, Shahbazi M-A et al (2014) The impact of nanoparticles on the mucosal translocation and transport of GLP-1 across the intestinal epithelium. Biomaterials 35(33):9199–9207PubMedCrossRefGoogle Scholar
  27. 27.
    Joseph J, Kalitsky J, St-Pierre S, Brubaker P (2000) Oral delivery of glucagon-like peptide-1 in a modified polymer preparation normalizes basal glycaemia in diabetic db/db mice. Diabetologia 43(10):1319–1328PubMedCrossRefGoogle Scholar
  28. 28.
    Gao Z, Tang Y, Chen J et al (2009) A novel DPP-IV-resistant analog of glucagon-like peptide-1 (GLP-1): KGLP-1 alone or in combination with long-acting PLGA microspheres. Peptides 30(10):1874–1881PubMedCrossRefGoogle Scholar
  29. 29.
    Yin D, Lu Y, Zhang H et al (2008) Preparation of glucagon-like peptide-1 loaded PLGA microspheres: characterizations, release studies and bioactivities in vitro/in vivo. Chem Pharm Bull (Tokyo) 56(2):156–161CrossRefGoogle Scholar
  30. 30.
    Jevsevar S, Kunstelj M, Porekar VG (2010) PEGylation of therapeutic proteins. Biotechnol J 5(1):113–128.  https://doi.org/10.1002/biot.200900218 PubMedCrossRefGoogle Scholar
  31. 31.
    Harris JM, Chess RB (2003) Effect of pegylation on pharmaceuticals. Nat Rev Drug Discov 2(3):214–221.  https://doi.org/10.1038/nrd1033 PubMedCrossRefGoogle Scholar
  32. 32.
    Baker DP, Lin EY, Lin K et al (2006) N-terminally PEGylated human interferon-β-1a with improved pharmacokinetic properties and in vivo efficacy in a melanoma angiogenesis model. Bioconj Chem 17(1):179–188CrossRefGoogle Scholar
  33. 33.
    Lee SH, Lee S, Youn YS et al (2005) Synthesis, characterization, and pharmacokinetic studies of PEGylated glucagon-like peptide-1. Bioconj Chem 16(2):377–382.  https://doi.org/10.1021/bc049735+ CrossRefGoogle Scholar
  34. 34.
    Lee S, Youn Y, Lee S, Byun Y, Lee K (2006) PEGylated glucagon-like peptide-1 displays preserved effects on insulin release in isolated pancreatic islets and improved biological activity in db/db mice. Diabetologia 49(7):1608–1611PubMedCrossRefGoogle Scholar
  35. 35.
    Chae SY, Jin CH, Shin HJ, Youn YS, Lee S, Lee KC (2008) Preparation, characterization, and application of biotinylated and biotin-PEGylated glucagon-like peptide-1 analogues for enhanced oral delivery. Bioconj Chem 19(1):334–341.  https://doi.org/10.1021/bc700292v CrossRefGoogle Scholar
  36. 36.
    Youn YS, Jeon JE, Chae SY, Lee S, Lee KC (2008) PEGylation improves the hypoglycaemic efficacy of intranasally administered glucagon-like peptide-1 in type 2 diabetic db/db mice. Diabetes Obes Metab 10(4):343–346.  https://doi.org/10.1111/j.1463-1326.2007.00823.x PubMedCrossRefGoogle Scholar
  37. 37.
    Schneider EL, Henise J, Reid R, Ashley GW, Santi DV (2016) Hydrogel drug delivery system using self-cleaving covalent linkers for once-a-week administration of exenatide. Bioconj Chem 27(5):1210–1215CrossRefGoogle Scholar
  38. 38.
    Chen X, Lv X, Yang G et al (2017) Polyethylene glycol loxenatide injections added to metformin effectively improve glycemic control and exhibit favorable safety in type 2 diabetic patients. J Diabetes 9(2):158–167.  https://doi.org/10.1111/1753-0407.12397 PubMedCrossRefGoogle Scholar
  39. 39.
    Gong N, Ma A-N, Zhang L-J et al (2011) Site-specific PEGylation of exenatide analogues markedly improved their glucoregulatory activity. Br J Pharmacol 163(2):399–412.  https://doi.org/10.1111/j.1476-5381.2011.01227.x PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
  41. 41.
    Dodane V, Amin Khan M, Merwin JR (1999) Effect of chitosan on epithelial permeability and structure. Int J Pharm 182(1):21–32.  https://doi.org/10.1016/S0378-5173(99)00030-7 PubMedCrossRefGoogle Scholar
  42. 42.
    Ahn S, Lee IH, Lee E, Kim H, Kim YC, Jon S (2013) Oral delivery of an anti-diabetic peptide drug via conjugation and complexation with low molecular weight chitosan. J Control Release 170(2):226–232.  https://doi.org/10.1016/j.jconrel.2013.05.031 PubMedCrossRefGoogle Scholar
  43. 43.
    Jean M, Alameh M, De Jesus D et al (2012) Chitosan-based therapeutic nanoparticles for combination gene therapy and gene silencing of in vitro cell lines relevant to type 2 diabetes. Eur J Pharm Sci 45(1–2):138–149.  https://doi.org/10.1016/j.ejps.2011.10.029 PubMedCrossRefGoogle Scholar
  44. 44.
    Nguyen HN, Wey SP, Juang JH et al (2011) The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo. Biomaterials 32(10):2673–2682.  https://doi.org/10.1016/j.biomaterials.2010.12.044 PubMedCrossRefGoogle Scholar
  45. 45.
    Chuang E-Y, Nguyen GTH, Su F-Y et al (2013) Combination therapy via oral co-administration of insulin-and exendin-4-loaded nanoparticles to treat type 2 diabetic rats undergoing OGTT. Biomaterials 34(32):7994–8001PubMedCrossRefGoogle Scholar
  46. 46.
    Son S, Chae SY, Kim CW et al (2009) Preparation and structural, biochemical, and pharmaceutical characterizations of bile acid-modified long-acting exendin-4 derivatives. J Med Chem 52(21):6889–6896.  https://doi.org/10.1021/jm901153x PubMedCrossRefGoogle Scholar
  47. 47.
    Son S, Lim SM, Chae SY et al (2015) Mono-lithocholated exendin-4-loaded glycol chitosan nanoparticles with prolonged antidiabetic effects. Int J Pharm 495(1):81–86.  https://doi.org/10.1016/j.ijpharm.2015.08.084 PubMedCrossRefGoogle Scholar
  48. 48.
    Akbarzadeh A, Rezaei-Sadabady R, Davaran S et al (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett 8(1):102.  https://doi.org/10.1186/1556-276X-8-102 PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hanato J, Kuriyama K, Mizumoto T et al (2009) Liposomal formulations of glucagon-like peptide-1: improved bioavailability and anti-diabetic effect. Int J Pharm 382(1–2):111–116.  https://doi.org/10.1016/j.ijpharm.2009.08.013 PubMedCrossRefGoogle Scholar
  50. 50.
  51. 51.
    Hassani LN, Lewis A, Richard J (2015) Oral peptide delivery: technology landscape and current status. On Drug Deliv 59:12–17Google Scholar
  52. 52.
    te Welscher YM, Chinnapen DJ, Kaoutzani L, Mrsny RJ, Lencer WI (2014) Unsaturated glycoceramides as molecular carriers for mucosal drug delivery of GLP-1. J Control Release 175:72–78.  https://doi.org/10.1016/j.jconrel.2013.12.013 CrossRefGoogle Scholar
  53. 53.
    Huotari A, Xu W, Monkare J et al (2013) Effect of surface chemistry of porous silicon microparticles on glucagon-like peptide-1 (GLP-1) loading, release and biological activity. Int J Pharm 454(1):67–73.  https://doi.org/10.1016/j.ijpharm.2013.06.063 PubMedCrossRefGoogle Scholar
  54. 54.
    Shrestha N, Araujo F, Shahbazi MA et al (2016) Oral hypoglycaemic effect of GLP-1 and DPP4 inhibitor based nanocomposites in a diabetic animal model. J Control Release 232:113–119.  https://doi.org/10.1016/j.jconrel.2016.04.024 PubMedCrossRefGoogle Scholar
  55. 55.
    Qu W, Li Y, Hovgaard L et al (2012) A silica-based pH-sensitive nanomatrix system improves the oral absorption and efficacy of incretin hormone glucagon-like peptide-1. Int J Nanomed 7:4983–4994.  https://doi.org/10.2147/ijn.s30013 Google Scholar
  56. 56.
    Leriche G, Chisholm L, Wagner A (2012) Cleavable linkers in chemical biology. Bioorg Med Chem 20(2):571–582.  https://doi.org/10.1016/j.bmc.2011.07.048 PubMedCrossRefGoogle Scholar
  57. 57.
    Jodal A, Pape F, Becker-Pauly C, Maas O, Schibli R, Béhé M (2015) Evaluation of 111In-Labelled exendin-4 derivatives containing different Meprin β-specific cleavable linkers. PLoS ONE 10(4):e0123443PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Zhang B, Yang B, Zhai C, Jiang B, Wu Y (2013) The role of exendin-4-conjugated superparamagnetic iron oxide nanoparticles in beta-cell-targeted MRI. Biomaterials 34(23):5843–5852.  https://doi.org/10.1016/j.biomaterials.2013.04.021 PubMedCrossRefGoogle Scholar
  59. 59.
    Wang P, Yoo B, Yang J et al (2014) GLP-1R—targeting magnetic nanoparticles for pancreatic islet imaging. Diabetes 63(5):1465–1474.  https://doi.org/10.2337/db13-1543 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Vinet L, Lamprianou S, Babič A et al (2015) Targeting GLP-1 receptors for repeated magnetic resonance imaging differentiates graded losses of pancreatic beta cells in mice. Diabetologia 58(2):304–312.  https://doi.org/10.1007/s00125-014-3442-2 PubMedCrossRefGoogle Scholar
  61. 61.
    Manandhar B, Ahn JM (2015) Glucagon-like peptide-1 (GLP-1) analogs: recent advances, new possibilities, and therapeutic implications. J Med Chem 58(3):1020–1037.  https://doi.org/10.1021/jm500810s PubMedCrossRefGoogle Scholar
  62. 62.
    Ostergaard L, Frandsen CS, Dejgaard TF, Madsbad S (2017) Fixed-ratio combination therapy with GLP-1 receptor agonist liraglutide and insulin degludec in people with type 2 diabetes. Expert Rev Clin Pharmacol 10(6):621–632.  https://doi.org/10.1080/17512433.2017.1313109 PubMedCrossRefGoogle Scholar
  63. 63.
    Frias JP, Guja C, Hardy E et al (2016) Exenatide once weekly plus dapagliflozin once daily versus exenatide or dapagliflozin alone in patients with type 2 diabetes inadequately controlled with metformin monotherapy (DURATION-8): a 28 week, multicentre, double-blind, phase 3, randomised controlled trial. Lancet Diabetes Endocrinol 4(12):1004–1016.  https://doi.org/10.1016/s2213-8587(16)30267-4 PubMedCrossRefGoogle Scholar
  64. 64.
    Nauck M (2016) Incretin therapies: highlighting common features and differences in the modes of action of glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors. Diabetes Obes Metab 18(3):203–216.  https://doi.org/10.1111/dom.12591 PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Glaesner W, Vick AM, Millican R et al (2010) Engineering and characterization of the long-acting glucagon-like peptide-1 analogue LY2189265, an Fc fusion protein. Diabetes/Metab Res Rev 26(4):287–296.  https://doi.org/10.1002/dmrr.1080 CrossRefGoogle Scholar
  66. 66.
    Li Y, Wang Y, Wei Q, Zheng X, Tang L, Kong D, Gong M (2015) Variant fatty acid-like molecules Conjugation, novel approaches for extending the stability of therapeutic peptides. Sci Rep 5:18039.  https://doi.org/10.1038/srep18039
  67. 67.
    Yang PY, Zou H, Chao E, Sherwood L, Nunez V, Keeney M, Ghartey-Tagoe E, Ding Z, Quirino H, Luo X, Welzel G, Chen G, Singh P, Woods AK, Schultz PG, Shen W (2016) Engineering a long-acting, potent GLP-1 analog for microstructure-based transdermal delivery. Proceedings of the National Academy of Sciences of the United States of America 113(15):4140-4145.  https://doi.org/10.1073/pnas.1601653113

Copyright information

© Springer-Verlag Italia S.r.l., part of Springer Nature 2017

Authors and Affiliations

  • Faruk H. Moonschi
    • 1
  • Corey B. Hughes
    • 2
  • George M. Mussman
    • 2
  • John L. Fowlkes
    • 2
  • Chris I. Richards
    • 1
  • Iuliana Popescu
    • 2
  1. 1.Department of ChemistryUniversity of KentuckyLexingtonUSA
  2. 2.Barnstable Brown Kentucky Diabetes CenterUniversity of KentuckyLexingtonUSA

Personalised recommendations