Skip to main content
Log in

Index of glucose effectiveness derived from oral glucose tolerance test

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aim of this study was to formulate an index for glucose effectiveness (Sg), SgIo, based on 3-point (0, 30 and 120 min) 75 g oral glucose tolerance test (OGTT). The equation for SgIO was developed in the Chikuma cohort (n = 502). Firstly, post-loading plasma glucose without insulin action and Sg (PPG-without insulin and Sg) was calculated as follows: fasting plasma glucose (mg/dl) + [0.75 × 75,000]/[0.19 × BW(kg) × 10]. Secondly, ‘PPG-without insulin/with Sg’ was obtained from inverse correlation between log10DIO and 2-h post-glucose plasma glucose at OGTT (2hPG) in each glucose tolerance category: DIO denotes oral disposition index, a product of the Matsuda Index and δIRI0–30/δPG0–30. Thirdly, expected 2hPG (2hPGE) of a given subject was obtained from the regression, and the ratio of 2hPG to 2hPGE (2hPG/2hPGE) was determined as an adjustment factor. Lastly, SgIO ([mg/dl]/min) was calculated as \( \frac{{[{\text{PPG}} \hbox{-} {\text{without}}\;{\text{insulin}}\;{\text{and}}\;{\text{Sg}}] - [{\text{PPG}} \hbox{-} {\text{without}}\;{\text{insulin}}/{\text{with}}\;{\text{Sg}}] \times [(2{\text{hPG}})/(2{\text{hPG}}_{\text{E}})]}}{120} \). SgIO was validated against Sg obtained by frequently sampled intravenous glucose tolerance test in the Jichi cohort (n = 205). Also, the accuracy of prediction of Sg by SgIo was tested by the Bland–Altman plot. SgIO was 3.61 ± 0.73, 3.17 ± 0.74 and 2.15 ± 0.60 in subjects with normal glucose tolerance (NGT), non-diabetic hyperglycemia and diabetes, respectively, in the Chikuma cohort. In the Jichi cohort, SgIO was significantly correlated with Sg in the entire group (r = 0.322, P < 0.001) and in subjects with NGT (r = 0.286, P < 0.001), and SgIo accurately predicted Sg. In conclusion, SgIO could be a simple, quantitative index for Sg.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BMI:

Body mass index

NGT:

Normal glucose tolerance

NDH:

Non-diabetic hyperglycemia

IFG:

Impaired fasting glucose

IGT:

Impaired glucose tolerance

DM:

Diabetes mellitus

T2DM:

Type 2 diabetes

FSIVGTT:

Frequently sampled intravenous glucose tolerance test

OGTT:

Oral glucose tolerance test

IRI:

Immunoreactive insulin

PPG:

Post-loading plasma glucose

FPG:

Fasting plasma glucose

2hPG:

2-h post-glucose PG

2hPGE :

Expected 2hPG

Sg:

Glucose effectiveness

SgIO :

Oral Sg index

SgIVG :

Sg determined by FSIVGTT or the clamp method

SI:

Insulin sensitivity index

DI:

Disposition index

DIO :

Oral disposition index

ISIMatsuda :

Insulin sensitivity determined by Matsuda Index

SMA:

Standardized major axis

SD:

Standard deviation

References

  1. Bergman RN, Finegood DT, Ader M (1985) Assessment of insulin sensitivity in vivo. Endocr Rev 6:45–86

    Article  PubMed  CAS  Google Scholar 

  2. Welch S, Gebhart SS, Bergman RN, Phillips LS (1990) Minimal model analysis of intravenous glucose tolerance test-derived insulin sensitivity in diabetic subjects. J Clin Endocrinol Metab 71:1508–1518

    Article  PubMed  CAS  Google Scholar 

  3. Taniguchi A, Nakai Y, Fukushima M, Kawamura H, Imura H, Nagata I et al (1992) Pathogenic factors responsible for glucose intolerance in patients with NIDDM. Diabetes 41:1540–1546

    Article  PubMed  CAS  Google Scholar 

  4. Taniguchi A, Nakai Y, Fukushima M, Imura H, Kawamura H, Nagata I et al (1994) Insulin sensitivity, insulin secretion, and glucose effectiveness in subjects with impaired glucose tolerance: a minimal model analysis. Metabolism 43:714–718

    Article  PubMed  CAS  Google Scholar 

  5. Best JD, Kahn SE, Ader M, Watanabe RM, Ni TC, Bergman RN (1996) Role of glucose effectiveness in the determination of glucose tolerance. Diabetes Care 19:1018–1030

    PubMed  CAS  Google Scholar 

  6. Basu A, Caumo A, Bettini F, Gelisio A, Alzaid A, Cobelli C et al (1997) Impaired basal glucose effectiveness in NIDDM: contribution of defects in glucose disappearance and production, measured using an optimized minimal model independent protocol. Diabetes 46:421–432

    Article  PubMed  CAS  Google Scholar 

  7. Nagasaka S, Tokuyama K, Kusaka I, Hayashi H, Rokkaku K, Nakamura T et al (1999) Endogenous glucose production and glucose effectiveness in type 2 diabetic subjects derived from stable-labeled minimal model approach. Diabetes 48:1054–1060

    Article  PubMed  CAS  Google Scholar 

  8. Taniguchi A, Fukushima M, Sakai M, Nagata I, Doi K, Nagasaka S et al (2000) Insulin secretion, insulin sensitivity, and glucose effectiveness in nonobese individuals with varying degrees of glucose tolerance. Diabetes Care 23:127–128

    Article  PubMed  CAS  Google Scholar 

  9. Tokuyama Y, Sakurai K, Yagui K, Hashimoto N, Saito Y, Kanatsuka A (2001) Pathophysiologic phenotypes of Japanese subjects with varying degrees of glucose tolerance: using the combination of C-peptide secretion rate and minimal model analysis. Metabolism 50:812–818

    Article  PubMed  CAS  Google Scholar 

  10. Tonelli J, Kishore P, Lee DE, Hawkins M (2005) The regulation of glucose effectiveness: how glucose modulates its own production. Curr Opin Clin Nutr Metab Care 8:450–456

    Article  PubMed  CAS  Google Scholar 

  11. Martin BC, Warram JH, Krolewski AS, Bergman RN, Soeldner JS, Kahn CR (1992) Role of glucose and insulin resistance in development of type 2 diabetes mellitus: results of a 25-year follow-up study. Lancet 340:925–929

    Article  PubMed  CAS  Google Scholar 

  12. Osei K, Rhinesmith S, Gaillard T, Schuster D (2004) Impaired insulin sensitivity, insulin secretion, and glucose effectiveness predict future development of impaired glucose tolerance and type 2 diabetes in pre-diabetic African Americans: implications for primary diabetes prevention. Diabetes Care 27:1439–1446

    Article  PubMed  CAS  Google Scholar 

  13. Lorenzo C, Wagenknecht LE, Karter AJ, Hanley AJ, Rewers MJ, Haffner SM (2011) Cross-sectional and longitudinal changes of glucose effectiveness in relation to glucose tolerance: the insulin resistance atherosclerosis study. Diabetes Care 34:1959–1964

    Article  PubMed  Google Scholar 

  14. Sakamaki H, Yamasaki H, Matsumoto K, Izumino K, Kondo H, Sera Y et al (1998) No deterioration in insulin sensitivity, but impairment of both pancreatic beta-cell function and glucose sensitivity, in Japanese women with former gestational diabetes mellitus. Diabet Med 15:1039–1044

    Article  PubMed  CAS  Google Scholar 

  15. Nishida Y, Tokuyama K, Nagasaka S, Higaki Y, Shirai Y, Kiyonaga A et al (2004) Effect of moderate exercise training on peripheral glucose effectiveness, insulin sensitivity, and endogenous glucose production in healthy humans estimated by a two-compartment-labeled minimal model. Diabetes 53:315–320

    Article  PubMed  CAS  Google Scholar 

  16. Hayashi Y, Nagasaka S, Takahashi N, Kusaka I, Ishibashi S, Numao S et al (2005) A single bout of exercise at higher intensity enhances glucose effectiveness in sedentary men. J Clin Endocrinol Metab 90:4035–4040

    Article  PubMed  CAS  Google Scholar 

  17. Page R, Boolell M, Kalfas A, Sawyer S, Pestell R, Ward G et al (1991) Insulin secretion, insulin sensitivity and glucose-mediated glucose disposal in Cushing’s disease: a minimal model analysis. Clin Endocrinol 35:509–517

    Article  CAS  Google Scholar 

  18. Matsumoto K, Yamasaki H, Akazawa S, Sakamaki H, Ishibashi M, Abiru N et al (1996) High-dose but not low-dose dexamethasone impairs glucose tolerance by inducing compensatory failure of pancreatic beta-cells in normal men. J Clin Endocrinol Metab 81:2621–2626

    Article  PubMed  CAS  Google Scholar 

  19. Nielsen MF, Caumo A, Chandramouli V, Schumann WC, Cobelli C, Landau BR et al (2004) Impaired basal glucose effectiveness but unaltered fasting glucose release and gluconeogenesis during short-term hypercortisolemia in healthy subjects. Am J Physiol Endocrinol Metab 286:E102–E110

    Article  PubMed  CAS  Google Scholar 

  20. Doi K, Taniguchi A, Nakai Y, Kawamura H, Higaki Y, Yokoi H et al (1997) Decreased glucose effectiveness but not insulin resistance in glucose-tolerant offspring of Japanese non-insulin-dependent diabetic patients: a minimal-model analysis. Metabolism 46:880–883

    Article  PubMed  CAS  Google Scholar 

  21. Ader M, Pacini G, Yang YJ, Bergman RN (1985) Importance of glucose per se to intravenous glucose tolerance. Comparison of the minimal-model prediction with direct measurements. Diabetes 34:1092–1103

    Article  PubMed  CAS  Google Scholar 

  22. Kahn SE, Prigeon RL, McCulloch DK, Boyko EJ, Bergman RN, Schwartz MW et al (1994) The contribution of insulin-dependent and insulin-independent glucose uptake to intravenous glucose tolerance in healthy human subjects. Diabetes 43:587–592

    Article  PubMed  CAS  Google Scholar 

  23. Sato Y, Komatsu M, Katakura M, Ohfusa H, Yamada S, Yamauchi K et al (2002) Diminution of early insulin response to glucose in subjects with normal but minimally elevated fasting plasma glucose. Evidence for early beta-cell dysfunction. Diabet Med 19:566–571

    Article  PubMed  CAS  Google Scholar 

  24. Katakura M, Komatsu M, Sato Y, Hashizume K, Aizawa T (2004) Primacy of beta-cell dysfunction in the development of hyperglycemia: a study in the Japanese general population. Metabolism 53:949–953

    Article  PubMed  CAS  Google Scholar 

  25. Aizawa T, Yamada M, Katakura M, Funase Y, Yamashita K, Yamauchi K (2012) Hyperbolic correlation between insulin sensitivity and insulin secretion fades away in lean subjects with superb glucose regulation. Endocr J 59:127–136

    Article  PubMed  CAS  Google Scholar 

  26. Definition and diagnosis of diabetes mellitus and intermediate hyperglycemia: report of a WHO/IDF consultation. Accessed at http://whqlibdoc.who.int/publications/2006/9241594934_eng.pdf

  27. Cederholm J, Wibell L (1985) Evaluation of insulin release and relative peripheral resistance with use of the oral glucose tolerance test: a study in subjects with normoglycaemia, glucose intolerance and non-insulin-dependent diabetes mellitus. Scand J Clin Lab Invest 45:741–751

    Article  PubMed  CAS  Google Scholar 

  28. Soonthornpun S, Setasuban W, Thamprasit A, Chayanunnukul W, Rattarasarn C, Geater A (2003) Novel insulin sensitivity index derived from oral glucose tolerance test. J Clin Endocrinol Metab 88:1019–1023

    Article  PubMed  CAS  Google Scholar 

  29. Giannini C, Weiss R, Cali A, Bonadonna R, Santoro N, Pierpont B, Shaw M, Caprio S (2012) Evidence for early defects in insulin sensitivity and secretion before the onset of glucose dysregulation in obese youths: a longitudinal study. Diabetes 61:606–614

    Article  PubMed  CAS  Google Scholar 

  30. Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22:1462–1470

    Article  PubMed  CAS  Google Scholar 

  31. DeFronzo RA, Matsuda M (2010) Reduced time points to calculate the composite index. Diabetes Care 33:e93

    Article  PubMed  Google Scholar 

  32. Kosaka K, Hagura R, Kuzuya T, Kuzuya N (1974) Insulin secretory response of diabetics during the period of improvement of glucose tolerance to normal range. Diabetologia 10:775–782

    Article  PubMed  CAS  Google Scholar 

  33. Kosaka K, Kuzuya T, Hagura R, Yoshinaga H (1996) Insulin response to oral glucose load is consistently decreased in established non-insulin-dependent diabetes mellitus: the usefulness of decreased early insulin response as a predictor of non-insulin-dependent diabetes mellitus. Diabet Med 13(9 Suppl 6):S109–S119

    PubMed  CAS  Google Scholar 

  34. Sokal RR, Rohlf FJ (2011) Biometry, 4th edn. WH Freeman, New York

    Google Scholar 

  35. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 327:307–310

    Article  Google Scholar 

  36. Islam MM, Horibe H, Kobayashi F (1999) Current trend in prevalence of diabetes mellitus in Japan, 1964–1992. J Epidemiol 9:155–162

    Article  PubMed  CAS  Google Scholar 

  37. Caumo A, Bergman RN, Cobelli C (2000) Insulin sensitivity from meal tolerance tests in normal subjects: a minimal model index. J Clin Endocrinol Metab 85:4396–4402

    Article  PubMed  CAS  Google Scholar 

  38. Breda E, Cavaghan MK, Toffolo G, Polonsky KS, Cobelli C (2001) Oral glucose tolerance test minimal model indexes of beta-cell function and insulin sensitivity. Diabetes 50:150–158

    Article  PubMed  CAS  Google Scholar 

  39. Kanat M, Norton L, Winnier D, Jenkinson C, DeFronzo RA, Abdul-Ghani MA (2011) Impaired early- but not late-phase insulin secretion in subjects with impaired fasting glucose. Acta Diabetol 48:209–217

    Article  PubMed  CAS  Google Scholar 

  40. Gallwitz B, Kazda C, Kraus P, Nicolay C, Schernthaner G (2011) Contribution of insulin deficiency and insulin resistance to the development of type 2 diabetes: nature of early stage diabetes. Acta Diabetol Aug 23 [Epub ahead of print]

  41. Aloulou I, Brun JF, Mercier J (2006) Evaluation of insulin sensitivity and glucose effectiveness during a standardized breakfast test: comparison with the minimal model analysis of an intravenous glucose tolerance test. Metabolism 55:676–690

    Article  PubMed  CAS  Google Scholar 

  42. Brun JF, Ghanassia E, Fédou C, Bordenave S, Raynaud de Mauverger E, Mercier J (2010) Assessment of insulin sensitivity (SI) and glucose effectiveness (SG) from a standardized hyperglucidic breakfast test in type 2 diabetics exhibiting various levels of insulin resistance. Acta Diabetol Oct 28 [Epub ahead of print]

  43. Clausen JO, Borch-Johnsen K, Ibsen H, Bergman RN, Hougaard P, Winther K et al (1996) Insulin sensitivity index, acute insulin response, and glucose effectiveness in a population-based sample of 380 young healthy Caucasians. Analysis of the impact of gender, body fat, physical fitness, and life-style factors. J Clin Invest 98:1195–1209

    Article  PubMed  CAS  Google Scholar 

  44. Escalante-Pulido M, Escalante-Herrera A, Milke-Najar ME, Alpizar-Salazar M (2003) Effects of weight loss on insulin secretion and in vivo insulin sensitivity in obese diabetic and non-diabetic subjects. Diabetes Nutr Metab 16:277–283

    PubMed  CAS  Google Scholar 

  45. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and β-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  PubMed  CAS  Google Scholar 

  46. Katz A, Nambi SS, Mather K, Baron AD, Follmann DA, Sullivan G et al (2000) Quantitative insulin sensitivity check index: a simple, accurate method for assessing insulin sensitivity in humans. J Clin Endocrinol Metab 85:2402–2410

    Article  PubMed  CAS  Google Scholar 

  47. Tokuyama K, Nagasaka S, Mori S, Takahashi N, Kusaka I, Kiyonaga A et al (2009) Hepatic insulin sensitivity assessed by integrated model of hepatic and peripheral glucose regulation. Diabetes Technol Ther 11:487–492

    Article  PubMed  CAS  Google Scholar 

  48. Livesey G, Wilson PD, Dainty JR, Brown JC, Faulks RM, Roe MA et al (1998) Simultaneous time-varying systemic appearance of oral and hepatic glucose in adults monitored with stable isotopes. Am J Physiol 275:E717–E728

    PubMed  CAS  Google Scholar 

  49. Cobelli C, Caumo A, Omenetto M (1999) Minimal model SG overestimation and SI underestimation: improved accuracy by a Bayesian two-compartment model. Am J Physiol 277:E481–E488

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The study was in part supported by Grants-in-Aid for Scientific Research from Japan Society for the Promotion of Science (Shoichiro Nagasaka). We thank Masayuki Yamada, Kissei Pharmaceuticals, for invaluable advice regarding statistics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toru Aizawa.

Additional information

Communicated by Renato Lauro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagasaka, S., Kusaka, I., Yamashita, K. et al. Index of glucose effectiveness derived from oral glucose tolerance test. Acta Diabetol 49 (Suppl 1), 195–204 (2012). https://doi.org/10.1007/s00592-012-0417-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-012-0417-y

Keywords

Navigation