Skip to main content
Log in

How Bürgi computed the sines of all integer angles simultaneously in 1586

  • Mathematik in historischer und philosophischer Sicht
  • Published:
Mathematische Semesterberichte Aims and scope Submit manuscript

Abstract

We present an algorithm discovered by Jost Bürgi around 1586, lost until 2013, and proven in 2015. Bürgi’s method needs only sums of integers and divisions by \(2\) to compute simultaneously and with any desired accuracy the sines of the \(n\)th parts of the right angle. We explain why it works with a new proof using polygons and discrete Fourier transforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. And as, because of my lack of languages, the door to the authors wasn’t always open to me as it was to others, I had to follow my own thoughts and find new ways a little more than, for example, the scholars and well-read. Jost Bürgi, Introduction to Coss [13].

References

  1. Berlekamp, E.R., Gilbert, E.N., Sinden, F.W.: A polygon problem. Am. Math. Mon. 72, 233–241 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bürgi, J.: Fundamentum Astronomiæ, 1592. Digital Library of the University of Wrocław. http://www.bibliotekacyfrowa.pl/dlibra/doccontent?id=45624. Accessed: 27 October 2017

  3. Chang, G., Davis, P.J.: A circulant formulation of the Napoleon-Douglas-Neumann theorem. Linear Algebra Appl. 54, 87–95 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Clark, K.: Jost Bürgi’s Aritmetische und geometrische Progreß Tabulen (1620). Edition and commentary. Science Networks, Historical Studies 53. Birkhäuser, Springer, New York (2015)

    Book  MATH  Google Scholar 

  5. Darboux, G.: Sur un problème de géométrie élémentaire, Bull. Sci. Math. Astr. 2e Sér. 2, pp. 298–304 (1878). http://archive.numdam.org/ARCHIVE/BSMA/BSMA_1878_2_2_1/BSMA_1878_2_2_1_298_1/BSMA_1878_2_2_1_298_1.pdf. Accessed: 27 October 2017

    Google Scholar 

  6. Douglas, J.: On linear polygon transformations. Bull. Am. Math. Soc. 46, 551–560 (1940)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fisher, J.C., Ruoff, D., Shilleto, J.: Perpendicular polygons. Am. Math. Mon. 92, 23–37 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Folkerts, M.: Eine bisher unbekannte Schrift von Jost Bürgi zur Trigonometrie. In: Gebhardt, R. (ed.), Arithmetik, Geometrie und Algebra in der frühen Neuzeit, pp. 107–114. Adam-Ries-Bund, Annaberg-Buchholz (2014)

    Google Scholar 

  9. Folkerts, M., Launert, D., Thom, A.: Jost Bürgi’s method for calculating sines. Hist. Math. 43(2), 133–147 (2016)

    Article  MATH  Google Scholar 

  10. Grünbaum, B.: Lecture notes on modern elementary geometry. EPrint Collection. University of Washington, Washington (1999). http://hdl.handle.net/1773/15592

    Google Scholar 

  11. Kepler, J.: Gesammelte Werke. Bayerische Akademie der Wissenschaften, Munich (1937–2017). http://kepler.badw.de/kepler-digital.html. Accessed: 27 October 2017

  12. Launert, D.: Nova Kepleriana: Bürgis Kunstweg im Fundamentum Astronomiæ, Entschlüsselung seines Rätsels. Verlag der Bayerischen Akademie der Wissenschaften, Munich (2015)

    Google Scholar 

  13. List, M., Bialas, V.: Nova Kepleriana: Die Coss von Jost Bürgi in der Redaktion von Johannes Kepler. Verlag der Bayerischen Akademie der Wissenschaften, Munich (1973)

    MATH  Google Scholar 

  14. Martini, H.: On the theorem of Napoleon and related topics. Math. Semesterber. 43, 47–64 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Neumann, B.H.: Some remarks on polygons. J. Lond. Math. Soc. 16, 230–245 (1941)

    Article  MathSciNet  MATH  Google Scholar 

  16. Neumann, B.H.: A remark on polygons. J. Lond. Math. Soc. 17, 165–166 (1942)

    Article  MathSciNet  MATH  Google Scholar 

  17. Nicollier, G.: Convolution filters for polygons and the Petr–Douglas–Neumann theorem. Beitr. Algebra Geom. 54, 701–708 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Nicollier, G.: Convolution filters for triangles. Forum Geom. 13, 61–85 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Nicollier, G.: Some theorems on polygons with one-line spectral proofs. Forum Geom. 15, 267–273 (2015)

    MathSciNet  MATH  Google Scholar 

  20. Nicollier, G.: A characterization of affinely regular polygons. Beitr. Algebra Geom. 57, 453–458 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nicollier, G., Stadler, A.: Limit shape of Iterated Kiepert triangles. Elem. Math. 68, 61–64 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Pech, P.: The harmonic analysis of polygons and Napoleon’s theorem. J. Geom. Graph. 5, 13–22 (2001)

    MathSciNet  MATH  Google Scholar 

  23. Petr, K.: O jedné větě pro mnohoúhelníky rovinné (On a Theorem for Planar Polygons). Čas. Mat. Fys. 34, 166–172 (1905). http://www.digizeitschriften.de/dms/toc/?PPN=PPN31311028X_0034

    Google Scholar 

  24. Roegel, D.: Some remarks on Bürgi’s interpolations. Technical report. LORIA, Nancy (2016). http://locomat.loria.fr/locomat/reconstructed.html

    Google Scholar 

  25. Schoenberg, I.J.: The finite Fourier series and elementary geometry. Am. Math. Mon. 57, 390–404 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  26. Schuster, W.: Polygonfolgen und Napoleonsätze. Math. Semesterber. 41, 23–42 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shapiro, D.B.: A periodicity problem in plane geometry. Am. Math. Mon. 91, 97–108 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Staudacher, F.: Jost Bürgi, Kepler und der Kaiser, 3rd edn. NZZ Libro, Zurich (2016)

    Google Scholar 

  29. Vartziotis, D., Wipper, J.: On the construction of regular polygons and generalized Napoleon vertices. Forum Geom. 9, 213–223 (2009)

    MathSciNet  MATH  Google Scholar 

  30. Waldvogel, J.: Jost Bürgi’s Artificium of 1586 in modern view, an ingenious algorithm for calculating tables of the sine function. Elem. Math. 71, 89–99 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Grégoire Nicollier.

Additional information

We are very grateful to Jörg Waldvogel for his generous and fruitful introduction to the subject.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nicollier, G. How Bürgi computed the sines of all integer angles simultaneously in 1586. Math Semesterber 65, 15–34 (2018). https://doi.org/10.1007/s00591-017-0209-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00591-017-0209-0

Keywords

Navigation