Minimally invasive reduction and percutaneous posterior fixation of one-level traumatic thoraco-lumbar and lumbar spine fractures

  • Marco Tinelli
  • Friederike Töpfer
  • Michael Kreinest
  • Stefan Matschke
  • Paul A. Grützner
  • Arnold J. Suda
Original Article • SPINE - FRACTURES
  • 14 Downloads

Abstract

Introduction

Although open procedures are the gold standard, the alternative approach of minimal invasive reduction using percutaneous screws for thoracic and lumbar spine fractures is under discussion. Aim of this study was to investigate the results of reduction and the accuracy of screw placement in minimally invasive percutaneous posterior instrumentation for these fractures.

Materials and methods

One hundred and twenty-seven patients with thoraco-lumbar and lumbar burst fractures and minimal invasive dorsal instrumentation were analyzed retrospectively in terms of the accuracy of pedicle screw placement and results of fracture reduction.

Results

In total, 542 screws were placed. Thirty-four (6.3%) screws of 22 patients (17.3%) were misplaced, but misplacement was minimal, replacement of any screw position due to instability was not necessary, and no new neurological deficit occurred. In thoraco-lumbar fractures (82/64.5%), reduction succeeded from 2.5 ± 6° kyphosis to 5.6 ± 5.7° lordosis (p < 0.001) and in lumbar spine fractures from 6.9° ± 10.3° lordosis to 14.5° ± 8.8° lordosis (p < 0.001).

Conclusion

Minimal invasive percutaneous dorsal instrumentation of burst fractures of the thoraco-lumbar and lumbar spine provides adequate reduction and reliable regular screw placement.

Level of evidence

Level IV (retrospective series).

Keywords

Minimal invasive spine surgery MIS Percutaneous One-level thoracic and lumbar spine fractures 

Notes

Author contributions

All authors have made substantial contributions to the conception and design of the study, acquisition of data, analysis and interpretation of data, drafting the article and revising it critically for important intellectual content and approved the version to be submitted.

Compliance with ethical standards

Conflict of interest

The authors have no conflicts of interest.

Ethical approval

The study was approved by the local ethical committee Ethik-Kommission der Landesärztekammer Rheinland-Pfalz, Germany.

References

  1. 1.
    Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3(4):184–201CrossRefPubMedGoogle Scholar
  2. 2.
    McLain RF, Sparling E, Benson DR (1993) Early failure of short-segment pedicle instrumentation for thoracolumbar fractures. A preliminary report. J Bone Joint Surg Am 75(2):162–167CrossRefPubMedGoogle Scholar
  3. 3.
    Eysel P, Hopf C, Furderer S (2001) Kyphotic deformation in fractures of the thoracic and lumbar spine. Der Orthopade 30(12):955–964CrossRefPubMedGoogle Scholar
  4. 4.
    Alander DH, Cui S (2018) Percutaneous pedicle screw stabilization: surgical technique, fracture reduction, and review of current spine trauma applications. J Am Acad Orthop Surg 26(7):231–240.  https://doi.org/10.5435/JAAOS-D-15-00638 CrossRefPubMedGoogle Scholar
  5. 5.
    Virk SS, Yu E (2017) The top 50 articles on minimally invasive spine surgery. Spine (Phila Pa 1976) 42(7):513–519.  https://doi.org/10.1097/brs.0000000000001797 CrossRefGoogle Scholar
  6. 6.
    Marcia S, Saba L, Marras M, Suri JS, Calabria E, Masala S (2016) Percutaneous stabilization of lumbar spine: a literature review and new options in treating spine pain. Br J Radiol 89(1065):20150436.  https://doi.org/10.1259/bjr.20150436 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Phan K, Rao PJ, Mobbs RJ (2015) Percutaneous versus open pedicle screw fixation for treatment of thoracolumbar fractures: systematic review and meta-analysis of comparative studies. Clin Neurol Neurosurg 135:85–92.  https://doi.org/10.1016/j.clineuro.2015.05.016 CrossRefPubMedGoogle Scholar
  8. 8.
    Scheer JK, Bakhsheshian J, Fakurnejad S, Oh T, Dahdaleh NS, Smith ZA (2015) Evidence-based medicine of traumatic thoracolumbar burst fractures: a systematic review of operative management across 20 years. Glob Spine J 5(1):73–82.  https://doi.org/10.1055/s-0034-1396047 CrossRefGoogle Scholar
  9. 9.
    Magerl FP (1984) Stabilization of the lower thoracic and lumbar spine with external skeletal fixation. Clin Orthop Relat Res 189:125–141Google Scholar
  10. 10.
    Schizas C, Theumann N, Kosmopoulos V (2007) Inserting pedicle screws in the upper thoracic spine without the use of fluoroscopy or image guidance. Is it safe? Eur Spine J 16(5):625–629.  https://doi.org/10.1007/s00586-006-0262-1 CrossRefPubMedGoogle Scholar
  11. 11.
    Korres DS, Katsaros A, Pantazopoulos T, Hartofilakidis-Garofalidis G (1981) Double or multiple level fractures of the spine. Injury 13(2):147–152CrossRefPubMedGoogle Scholar
  12. 12.
    Korres DS, Boscainos PJ, Papagelopoulos PJ, Psycharis I, Goudelis G, Nikolopoulos K (2003) Multiple level noncontiguous fractures of the spine. Clin Orthop Relat Res 411:95–102.  https://doi.org/10.1097/01.blo.0000068362.47147.a2 CrossRefGoogle Scholar
  13. 13.
    Oner FC, Wood KB, Smith JS, Shaffrey CI (2010) Therapeutic decision making in thoracolumbar spine trauma. Spine (Phila Pa 1976) 35(21 Suppl):S235–S244.  https://doi.org/10.1097/brs.0b013e3181f32734 CrossRefGoogle Scholar
  14. 14.
    Verheyden AP, Holzl A, Ekkerlein H, Gercek E, Hauck S, Josten C, Kandziora F, Katscher S, Knop C, Lehmann W, Meffert R, Muller CW, Partenheimer A, Schinkel C, Schleicher P, Schnake KJ, Scholz M, Ulrich C (2011) Recommendations for the treatment of thoracolumbar and lumbar spine injuries. Unfallchirurg 114(1):9–16.  https://doi.org/10.1007/s00113-010-1934-1 CrossRefPubMedGoogle Scholar
  15. 15.
    Gertzbein SD, Robbins SE (1990) Accuracy of pedicular screw placement in vivo. Spine (Phila Pa 1976) 15(1):11–14CrossRefGoogle Scholar
  16. 16.
    Kim DY, Lee SH, Chung SK, Lee HY (2005) Comparison of multifidus muscle atrophy and trunk extension muscle strength: percutaneous versus open pedicle screw fixation. Spine (Phila Pa 1976) 30(1):123–129CrossRefGoogle Scholar
  17. 17.
    Rodriguez-Vela J, Lobo-Escolar A, Joven-Aliaga E, Herrera A, Vicente J, Sunen E, Loste A, Tabuenca A (2009) Perioperative and short-term advantages of mini-open approach for lumbar spinal fusion. Eur Spine J 18(8):1194–1201.  https://doi.org/10.1007/s00586-009-1010-0 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Schmidt OI, Strasser S, Kaufmann V, Strasser E, Gahr RH (2007) Role of early minimal-invasive spine fixation in acute thoracic and lumbar spine trauma. Indian J Orthop 41(4):374–380.  https://doi.org/10.4103/0019-5413.37003 CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fan S, Hu Z, Zhao F, Zhao X, Huang Y, Fang X (2010) Multifidus muscle changes and clinical effects of one-level posterior lumbar interbody fusion: minimally invasive procedure versus conventional open approach. Eur Spine J 19(2):316–324.  https://doi.org/10.1007/s00586-009-1191-6 CrossRefPubMedGoogle Scholar
  20. 20.
    Heintel TM, Berglehner A, Meffert R (2013) Accuracy of percutaneous pedicle screws for thoracic and lumbar spine fractures: a prospective trial. Eur Spine J 22(3):495–502.  https://doi.org/10.1007/s00586-012-2476-8 CrossRefPubMedGoogle Scholar
  21. 21.
    Palmisani M, Gasbarrini A, Brodano GB, De Iure F, Cappuccio M, Boriani L, Amendola L, Boriani S (2009) Minimally invasive percutaneous fixation in the treatment of thoracic and lumbar spine fractures. Eur Spine J 18(Suppl 1):71–74.  https://doi.org/10.1007/s00586-009-0989-6 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Loibl M, Korsun M, Reiss J, Gueorguiev B, Nerlich M, Neumann C, Baumann F (2015) Spinal fracture reduction with a minimal-invasive transpedicular Schanz Screw system: clinical and radiological one-year follow-up. Injury 46(Suppl 4):S75–S82.  https://doi.org/10.1016/S0020-1383(15)30022-X CrossRefPubMedGoogle Scholar
  23. 23.
    Grossbach AJ, Dahdaleh NS, Abel TJ, Woods GD, Dlouhy BJ, Hitchon PW (2013) Flexion-distraction injuries of the thoracolumbar spine: open fusion versus percutaneous pedicle screw fixation. Neurosurg Focus 35(2):E2.  https://doi.org/10.3171/2013.6.FOCUS13176 CrossRefPubMedGoogle Scholar
  24. 24.
    Fitschen-Oestern S, Scheuerlein F, Weuster M, Klueter T, Menzdorf L, Varoga D, Kopetsch C, Mueller M, van der Horst A, Seekamp A, Behrendt P, Lippross S (2015) Reduction and retention of thoracolumbar fractures by minimally invasive stabilisation versus open posterior instrumentation. Injury 46(Suppl 4):S63–S70.  https://doi.org/10.1016/S0020-1383(15)30020-6 CrossRefPubMedGoogle Scholar
  25. 25.
    Chapman TM, Blizzard DJ, Brown CR (2016) CT accuracy of percutaneous versus open pedicle screw techniques: a series of 1609 screws. Eur Spine J 25(6):1781–1786.  https://doi.org/10.1007/s00586-015-4163-z CrossRefPubMedGoogle Scholar
  26. 26.
    Oh HS, Kim JS, Lee SH, Liu WC, Hong SW (2013) Comparison between the accuracy of percutaneous and open pedicle screw fixations in lumbosacral fusion. Spine J 13(12):1751–1757.  https://doi.org/10.1016/j.spinee.2013.03.042 CrossRefPubMedGoogle Scholar
  27. 27.
    Kreinest M, Rillig J, Grutzner PA, Kuffer M, Tinelli M, Matschke S (2016) Analysis of complications and perioperative data after open or percutaneous dorsal instrumentation following traumatic spinal fracture of the thoracic and lumbar spine: a retrospective cohort study including 491 patients. Eur Spine J.  https://doi.org/10.1007/s00586-016-4911-8 PubMedGoogle Scholar
  28. 28.
    Tinelli M, Matschke S, Adams M, Grutzner PA, Munzberg M, Suda AJ (2014) Correct positioning of pedicle screws with a percutaneous minimal invasive system in spine trauma. Orthop Traumatol Surg Res 100(4):389–393.  https://doi.org/10.1016/j.otsr.2014.03.015 CrossRefPubMedGoogle Scholar
  29. 29.
    Blattert TR, Katscher S, Josten C (2011) Percutaneous techniques in the thoracic and lumbar spine. Der Unfallchirurg 114(1):17–25.  https://doi.org/10.1007/s00113-010-1939-9 CrossRefPubMedGoogle Scholar
  30. 30.
    Lieberman IH, Hardenbrook MA, Wang JC, Guyer RD (2012) Assessment of pedicle screw placement accuracy, procedure time, and radiation exposure using a miniature robotic guidance system. J Spinal Disord Tech 25(5):241–248.  https://doi.org/10.1097/BSD.0b013e318218a5ef CrossRefPubMedGoogle Scholar
  31. 31.
    Park Y, Ha JW, Lee YT, Sung NY (2011) Cranial facet joint violations by percutaneously placed pedicle screws adjacent to a minimally invasive lumbar spinal fusion. Spine J 11(4):295–302.  https://doi.org/10.1016/j.spinee.2011.02.007 CrossRefPubMedGoogle Scholar
  32. 32.
    Grass R, Biewener A, Dickopf A, Rammelt S, Heineck J, Zwipp H (2006) Percutaneous dorsal versus open instrumentation for fractures of the thoracolumbar border. A comparative, prospective study. Der Unfallchirurg 109(4):297–305.  https://doi.org/10.1007/s00113-005-1037-6 CrossRefPubMedGoogle Scholar
  33. 33.
    Hitchon PW, Torner J, Eichholz KM, Beeler SN (2006) Comparison of anterolateral and posterior approaches in the management of thoracolumbar burst fractures. J Neurosurg Spine 5(2):117–125.  https://doi.org/10.3171/spi.2006.5.2.117 CrossRefPubMedGoogle Scholar
  34. 34.
    Reinhold M, Knop C, Beisse R, Audige L, Kandziora F, Pizanis A, Pranzl R, Gercek E, Schultheiss M, Weckbach A, Buhren V, Blauth M (2009) Operative treatment of traumatic fractures of the thoracic and lumbar spinal column. Part I: epidemiology. Der Unfallchirurg 112(1):33–45.  https://doi.org/10.1007/s00113-008-1524-7 CrossRefPubMedGoogle Scholar
  35. 35.
    Dhall SS, Wadhwa R, Wang MY, Tien-Smith A, Mummaneni PV (2014) Traumatic thoracolumbar spinal injury: an algorithm for minimally invasive surgical management. Neurosurg Focus 37(1):E9.  https://doi.org/10.3171/2014.5.FOCUS14108 CrossRefPubMedGoogle Scholar
  36. 36.
    Wood KB, Li W, Lebl DR, Ploumis A (2014) Management of thoracolumbar spine fractures. Spine J 14(1):145–164.  https://doi.org/10.1016/j.spinee.2012.10.041 CrossRefPubMedGoogle Scholar
  37. 37.
    Blondel B, Fuentes S, Metellus P, Adetchessi T, Pech-Gourg G, Dufour H (2009) Severe thoracolumbar osteoporotic burst fractures: treatment combining open kyphoplasty and short-segment fixation. Orthop Traumatol Surg Res: OTSR 95(5):359–364.  https://doi.org/10.1016/j.otsr.2009.06.001 CrossRefPubMedGoogle Scholar
  38. 38.
    Takami M, Yamada H, Nohda K, Yoshida M (2014) A minimally invasive surgery combining temporary percutaneous pedicle screw fixation without fusion and vertebroplasty with transpedicular intracorporeal hydroxyapatite blocks grafting for fresh thoracolumbar burst fractures: prospective study. Eur J Orthop Surg Traumatol 24(Suppl 1):S159–S165.  https://doi.org/10.1007/s00590-013-1266-2 CrossRefPubMedGoogle Scholar
  39. 39.
    Hartmann F, Gercek E, Leiner L, Rommens PM (2012) Kyphoplasty as an alternative treatment of traumatic thoracolumbar burst fractures Magerl type A3. Injury 43(4):409–415.  https://doi.org/10.1016/j.injury.2010.03.025 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  • Marco Tinelli
    • 1
    • 2
  • Friederike Töpfer
    • 2
  • Michael Kreinest
    • 2
  • Stefan Matschke
    • 2
    • 3
  • Paul A. Grützner
    • 2
  • Arnold J. Suda
    • 3
  1. 1.Department of Orthopaedics and Trauma SurgerySinsheim HospitalSinsheimGermany
  2. 2.Department of Trauma and OrthopaedicsBG Trauma Center LudwigshafenLudwigshafenGermany
  3. 3.Department of Orthopaedics and Trauma Surgery, University Medical Center MannheimMedical Faculty Mannheim of Heidelberg UniversityMannheimGermany

Personalised recommendations