Skip to main content
Log in

Considerations in sagittal evaluation of the scoliotic spine

  • Original Article • SPINE- SCOLIOSIS
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Purpose

To predict the sagittal spinal parameters as measured in a 3D model of the spine using the 2D radiographic measurements.

Methods

Bi-planar low-dose stereoradiography images of 73 right thoracic AIS patients were processed to generate 3D models of the spine and pelvis. T1–T12 kyphosis, L1–S1 lordosis, and pelvic rotation were calculated using these 3D models. With the same X-rays, T1–T12 kyphosis, L1–S1 lordosis, thoracic and lumbar frontal curves, and pelvic rotation (calculated from the frontal and sagittal distances between the femoral heads) were manually measured on the X-rays by two independent observers. 3D sagittal parameters were predicted from only 2D sagittal parameters (simple regression) and from 2D sagittal parameters, 2D frontal parameters, and pelvic rotation (multiple regression). The simple and multiple regression models were compared for efficiency and accuracy of prediction.

Results

Comparing single and multiple regression models, multiple regression improved the prediction of the 3D sagittal parameters for kyphosis (R2 = 0.78–0.86) and lordosis (R2 = 0.88–0.92) measurements when compared to simple regression. The impact of pelvic rotation was significant when 2D kyphosis was higher than 40° and thoracic curve was less than 60° or 2D kyphosis was less than 40° and thoracic curve was higher than 60°, p < 0.05. Lordosis of 60° and higher were more prone to measurement error when pelvic rotation was present, p < 0.05.

Conclusions

Both pelvic rotation and frontal deformity affect the accuracy of the 2D sagittal measurements of the scoliotic spine. We suggest the importance of the 3D considerations in sagittal evaluation of AIS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Stokes IA (1994) Three-dimensional terminology of spinal deformity. A report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3-D terminology of spinal deformity. Spine (Phila Pa 1976) 19(2):236–248

    Article  CAS  Google Scholar 

  2. Perdriolle R, Le Borgne P, Dansereau J, de Guise J, Labelle H (2001) Idiopathic scoliosis in three dimensions: a succession of two-dimensional deformities? Spine (Phila Pa 1976) 26(24):2719–2726

    Article  CAS  Google Scholar 

  3. Pasha S, Flynn JM, Sponseller PD, Orlando G, Newton PO, Cahill PJ, Harms Study Group (2017) Timing of changes in three-dimensional spinal parameters after selective thoracic fusion in Lenke 1 adolescent idiopathic scoliosis: two-year follow-up. Spine Deform 5(6):409–415. https://doi.org/10.1016/j.jspd.2017.04.003

    Article  PubMed  Google Scholar 

  4. Pasha S, Cahill PJ, Dormans JP, Flynn JM (2016) Characterizing the differences between the 2D and 3D measurements of spine in adolescent idiopathic scoliosis. Eur Spine J 25(10):3137–3145. https://doi.org/10.1007/s00586-016-4582-5

    Article  PubMed  Google Scholar 

  5. Newton PO, Fujimori T, Doan J, Reighard FG, Bastrom TP, Misaghi A (2015) Defining the “three-dimensional sagittal plane” in thoracic adolescent idiopathic scoliosis. J Bone Joint Surg Am 97(20):1694–1701. https://doi.org/10.2106/JBJS.O.00148

    Article  PubMed  Google Scholar 

  6. Nault ML, Mac-Thiong JM, Roy-Beaudry M, Turgeon I, Deguise J, Labelle H, Parent S (2014) Three-dimensional spinal morphology can differentiate between progressive and nonprogressive patients with adolescent idiopathic scoliosis at the initial presentation: a prospective study. Spine (Phila Pa 1976) 39(10):E601–E606. https://doi.org/10.1097/brs.0000000000000284

    Article  Google Scholar 

  7. Newton PO, Khandwala Y, Bartley CE, Reighard FG, Bastrom TP, Yaszay B (2016) New EOS imaging protocol allows a substantial reduction in radiation exposure for scoliosis patients. Spine Deform 4(2):138–144. https://doi.org/10.1016/j.jspd.2015.09.002

    Article  PubMed  Google Scholar 

  8. Ilharreborde B, Dubousset J, Le Huec JC (2014) Use of EOS imaging for the assessment of scoliosis deformities: application to postoperative 3D quantitative analysis of the trunk. Eur Spine J 23(Suppl 4):S397–S405. https://doi.org/10.1007/s00586-014-3334-7

    Article  PubMed  Google Scholar 

  9. Lechner R, Putzer D, Dammerer D, Liebensteiner M, Bach C, Thaler M (2017) Comparison of two- and three-dimensional measurement of the Cobb angle in scoliosis. Int Orthop 41(5):957–962. https://doi.org/10.1007/s00264-016-3359-0

    Article  PubMed  Google Scholar 

  10. Humbert L, De Guise JA, Aubert B, Godbout B, Skalli W (2009) 3D reconstruction of the spine from biplanar X-rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys 31(6):681–687. https://doi.org/10.1016/j.medengphy.2009.01.003

    Article  PubMed  CAS  Google Scholar 

  11. Schmid SL, Buck FM, Boni T, Farshad M (2016) Radiographic measurement error of the scoliotic curve angle depending on positioning of the patient and the side of scoliotic curve. Eur Spine J 25(2):379–384. https://doi.org/10.1007/s00586-015-4259-5

    Article  PubMed  Google Scholar 

  12. Gareen IF, Gatsonis C (2003) Primer on multiple regression models for diagnostic imaging research. Radiology 229(2):305–310. https://doi.org/10.1148/radiol.2292030324

    Article  PubMed  Google Scholar 

  13. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Berry WG, Golder M, Milton D (2012) Improving tests of theories positing interaction. J Politics 74(3):653–671. https://doi.org/10.1017/S0022381612000199

    Article  Google Scholar 

  15. Fox J (2003) Effect displays in R for generalised linear models. J Stat Softw 8:1–27

    Article  Google Scholar 

  16. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  17. Ilharreborde B, Steffen JS, Nectoux E, Vital JM, Mazda K, Skalli W, Obeid I (2011) Angle measurement reproducibility using EOS three-dimensional reconstructions in adolescent idiopathic scoliosis treated by posterior instrumentation. Spine (Phila Pa 1976) 36(20):E1306–E1313. https://doi.org/10.1097/brs.0b013e3182293548

    Article  Google Scholar 

  18. Gangnet N, Dumas R, Pomero V, Mitulescu A, Skalli W, Vital JM (2006) Three-dimensional spinal and pelvic alignment in an asymptomatic population. Spine (Phila Pa 1976) 31(15):E507–E512. https://doi.org/10.1097/01.brs.0000224533.19359.89

    Article  Google Scholar 

  19. Hayashi K, Upasani VV, Pawelek JB, Aubin CE, Labelle H, Lenke LG, Jackson R, Newton PO (2009) Three-dimensional analysis of thoracic apical sagittal alignment in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 34(8):792–797. https://doi.org/10.1097/brs.0b013e31818e2c36

    Article  Google Scholar 

  20. Somoskeoy S, Tunyogi-Csapo M, Bogyo C, Illes T (2012) Clinical validation of coronal and sagittal spinal curve measurements based on three-dimensional vertebra vector parameters. Spine J 12(10):960–968. https://doi.org/10.1016/j.spinee.2012.08.175

    Article  PubMed  Google Scholar 

  21. Rehm J, Germann T, Akbar M, Pepke W, Kauczor HU, Weber MA, Spira D (2017) 3D-modeling of the spine using EOS imaging system: inter-reader reproducibility and reliability. PLoS ONE 12(2):e0171258. https://doi.org/10.1371/journal.pone.0171258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Parvaresh KC, Osborn EJ, Reighard FG, Doan J, Bastrom TP, Newton PO (2017) Predicting 3D thoracic kyphosis using traditional 2D radiographic measurements in adolescent idiopathic scoliosis. Spine Deform 5(3):159–165. https://doi.org/10.1016/j.jspd.2016.12.002

    Article  PubMed  Google Scholar 

  23. Stokes IA, Bigalow LC, Moreland MS (1986) Measurement of axial rotation of vertebrae in scoliosis. Spine (Phila Pa 1976) 11(3):213–218

    Article  CAS  Google Scholar 

  24. Eijgenraam SM, Boselie TF, Sieben JM, Bastiaenen CH, Willems PC, Arts JJ, Lataster A (2017) Development and assessment of a digital X-ray software tool to determine vertebral rotation in adolescent idiopathic scoliosis. Spine J 17(2):260–265. https://doi.org/10.1016/j.spinee.2015.09.039

    Article  PubMed  Google Scholar 

  25. Jain D, Berven S (2017) Commentary on development and assessment of a digital X-ray software tool to determine vertebral rotation in adolescent idiopathic scoliosis. Spine J 17(2):266–268. https://doi.org/10.1016/j.spinee.2016.08.027

    Article  PubMed  Google Scholar 

  26. Sullivan TB, Bastrom T, Reighard F, Jeffords M, Newton PO (2017) A novel method for estimating three-dimensional apical vertebral rotation using two-dimensional coronal cobb angle and thoracic kyphosis. Spine Deform 5(4):244–249. https://doi.org/10.1016/j.jspd.2017.01.012

    Article  PubMed  Google Scholar 

  27. Sullivan TB, Reighard FG, Osborn EJ, Parvaresh KC, Newton PO (2017) Thoracic idiopathic scoliosis severity is highly correlated with 3D measures of thoracic kyphosis. J Bone Joint Surg Am 99(11):e54. https://doi.org/10.2106/JBJS.16.01324

    Article  PubMed  Google Scholar 

  28. Faria R, McKenna C, Wade R, Yang H, Woolacott N, Sculpher M (2013) The EOS 2D/3D X-ray imaging system: a cost-effectiveness analysis quantifying the health benefits from reduced radiation exposure. Eur J Radiol 82(8):e342–e349. https://doi.org/10.1016/j.ejrad.2013.02.015

    Article  PubMed  Google Scholar 

  29. Dietrich TJ, Pfirrmann CW, Schwab A, Pankalla K, Buck FM (2013) Comparison of radiation dose, workflow, patient comfort and financial break-even of standard digital radiography and a novel biplanar low-dose X-ray system for upright full-length lower limb and whole spine radiography. Skeletal Radiol 42(7):959–967. https://doi.org/10.1007/s00256-013-1600-0

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saba Pasha.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasha, S., Ecker, M. & Deeney, V. Considerations in sagittal evaluation of the scoliotic spine. Eur J Orthop Surg Traumatol 28, 1039–1045 (2018). https://doi.org/10.1007/s00590-018-2175-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-018-2175-1

Keywords

Navigation