European Spine Journal

, Volume 27, Issue 4, pp 806–814 | Cite as

Basic concepts in metal work failure after metastatic spine tumour surgery

  • Naresh Kumar
  • Ravish Patel
  • Anshuja Charvi Wadhwa
  • Aravind Kumar
  • Helena Maria Milavec
  • Dhiraj Sonawane
  • Gurpal Singh
  • Lorin Michael Benneker



The development of spinal implants marks a watershed in the evolution of metastatic spine tumour surgery (MSTS), which has evolved from standalone decompressive laminectomy to instrumented stabilization and decompression with reconstruction when necessary. Fusion may not be feasible after MSTS due to poor quality of graft host bed along with adjunct chemotherapy and/or radiotherapy postoperatively. With an increase in the survival of patients with spinal tumours, there is a probability of an increase in the rate of implant failure. This review aims to help establish a clear understanding of implants/constructs used in MSTS and to highlight the fundamental biomechanics of implant/construct failures.


Published literature on implant failure after spine surgery and MSTS has been reviewed. The evolution of spinal implants and their role in MSTS has been briefly described. The review defines implant/construct failures using radiological parameters that are practical, feasible, and derived from historical descriptions. We have discussed common modes of implant/construct failure after MSTS to allow further understanding, interception, and prevention of catastrophic failure.


Implant failure rates in MSTS are in the range of 2–8%. Variability in patterns of failure has been observed based on anatomical region and the type of constructs used. Patients with construct/implant failures may or may not be symptomatic and present either as early (< 3months) or late failures (> 3months). It has been noted that not all the implant failures after MSTS result in revisions.


Based on the observed radiological criteria and clinical presentations, we have proposed a clinico-radiological classification for implant/construct failure after MSTS.


Metastatic spine tumour surgery Symptomatic implant failure Asymptomatic implant failure Early failure Late failure 


Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Financial disclosures



  1. 1.
    Lee BH, Kim TH, Chong HS, Moon ES, Park JO, Kim HS, Kim SH, Lee HM, Cho YJ, Kim KN, Moon SH (2013) Prognostic factor analysis in patients with metastatic spine disease depending on surgery and conservative treatment: review of 577 cases. Ann Surg Oncol 20:40–46CrossRefPubMedGoogle Scholar
  2. 2.
    Street J, Berven S, Fisher C, Ryken T (2009) Health related quality of life assessment in metastatic disease of the spine: a systematic review. Spine (Phila Pa 1976) 34:S128–S134CrossRefGoogle Scholar
  3. 3.
    Street J, Lenehan B, Berven S, Fisher C (2010) Introducing a new health-related quality of life outcome tool for metastatic disease of the spine: content validation using the international classification of functioning, disability, and health; on behalf of the Spine Oncology Study Group. Spine 35:1377–1386CrossRefPubMedGoogle Scholar
  4. 4.
    Amankulor NM, Xu R, Iorgulescu JB, Chapman T, Reiner AS, Riedel E, Lis E, Yamada Y, Bilsky M, Laufer I (2014) The incidence and patterns of hardware failure after separation surgery in patients with spinal metastatic tumors. Spine J 14:1850–1859CrossRefPubMedGoogle Scholar
  5. 5.
    Bellato RT, Teixeira WG, Torelli AG, Cristante AF, de Barros TE, de Camargo OP (2015) Late failure of posterior fixation without bone fusion for vertebral metastases. Acta Ortop Bras 23:303–306CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Gokaslan ZL, Laufer I, Wolinsky JP (2013) Evolution of spinal instrumentation. World Neurosurg 80:243–244CrossRefPubMedGoogle Scholar
  7. 7.
    Peek RD, Wiltse LL (1990) History of spinal fusion. In: Cotler JM, Cotler HB (eds) Spinal fusion: science and Technique, 1st edn. Springer, Verlag, New York, pp 3–8CrossRefGoogle Scholar
  8. 8.
    Hibbs RA (1912) A further consideration of an operation for Pott’s disease of the spine: with report of cases from the service of the New York Orthopaedic Hospital. Ann Surg 55:682–688CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Albee FH (2007) Transplantation of a portion of the tibia into the spine for Pott’s disease: a preliminary report 1911. Clin Orthop Relat Res 460:14–16CrossRefPubMedGoogle Scholar
  10. 10.
    King D (1948) Internal fixation for lumbosacral fusion. J Bone Jt Surg Am 30A:560–565CrossRefGoogle Scholar
  11. 11.
    Harrington PR (1962) Treatment of scoliosis. Correction and internal fixation by spine instrumentation. J Bone Jt Surg Am 44-A:591–610CrossRefGoogle Scholar
  12. 12.
    Roy-Camille R, Roy-Camille M, Demeulenaere C (1970) Osteosynthesis of dorsal, lumbar, and lumbosacral spine with metallic plates screwed into vertebral pedicles and articular apophyses. Presse Med 78:1447–1448PubMedGoogle Scholar
  13. 13.
    Steffee AD, Biscup RS, Sitkowski DJ (1986) Segmental spine plates with pedicle screw fixation. A new internal fixation device for disorders of the lumbar and thoracolumbar spine. Clin Orthop Relat Res 203:45–53Google Scholar
  14. 14.
    Kabins MB, Weinstein JN (1991) The history of vertebral screw and pedicle screw fixation. Iowa Orthop J 11:127PubMedCentralGoogle Scholar
  15. 15.
    Bakar D, Tanenbaum JE, Phan K, Alentado VJ, Steinmetz MP, Benzel EC, Mroz TE (2016) Decompression surgery for spinal metastases: a systematic review. Neurosurg Focus 41:E2CrossRefPubMedGoogle Scholar
  16. 16.
    Kumar N, Malhotra R, Zaw AS, Maharajan K, Naresh N, Kumar A, Vallayappan B (2017) Evolution in treatment strategy for metastatic spine disease: presently evolving modalities. Eur J Surg Oncol 43(9):1784–1801CrossRefPubMedGoogle Scholar
  17. 17.
    Kostuik JP, Errico TJ, Gleason TF, Errico CC (1988) Spinal stabilization of vertebral column tumors. Spine (Phila Pa 1976) 13:250–256CrossRefGoogle Scholar
  18. 18.
    Patchell RA, Tibbs PA, Regine WF, Payne R, Saris S, Kryscio RJ, Mohiuddin M, Young B (2005) Direct decompressive surgical resection in the treatment of spinal cord compression caused by metastatic cancer: a randomised trial. Lancet 366:643–648CrossRefPubMedGoogle Scholar
  19. 19.
    Fourney DR, Abi-Said D, Lang FF, McCutcheon IE, Gokaslan ZL (2001) Use of pedicle screw fixation in the management of malignant spinal disease: experience in 100 consecutive procedures. J Neurosurg 94:25–37PubMedGoogle Scholar
  20. 20.
    Bilsky MH, Laufer I, Burch S (2009) Shifting paradigms in the treatment of metastatic spine disease. Spine (Phila Pa 1976) 34:S101–S107CrossRefGoogle Scholar
  21. 21.
    Wang JC, Boland P, Mitra N, Yamada Y, Lis E, Stubblefield M, Bilsky MH (2004) Single-stage posterolateral transpedicular approach for resection of epidural metastatic spine tumors involving the vertebral body with circumferential reconstruction: results in 140 patients. Invited submission from the joint section meeting on disorders of the spine and peripheral nerves, March 2004. J Neurosurg Spine 1:287–298CrossRefPubMedGoogle Scholar
  22. 22.
    Tomita K, Kawahara N, Baba H, Tsuchiya H, Nagata S, Toribatake Y (1994) Total en bloc spondylectomy for solitary spinal metastases. Int Orthop 18:291–298CrossRefPubMedGoogle Scholar
  23. 23.
    Fourney DR, Abi-Said D, Rhines LD, Walsh GL, Lang FF, McCutcheon IE, Gokaslan ZL (2001) Simultaneous anterior–posterior approach to the thoracic and lumbar spine for the radical resection of tumors followed by reconstruction and stabilization. J Neurosurg 94:232–244PubMedGoogle Scholar
  24. 24.
    Sundaresan N, Steinberger AA, Moore F, Sachdev VP, Krol G, Hough L, Kelliher K (1996) Indications and results of combined anterior–posterior approaches for spine tumor surgery. J Neurosurg 85:438–446CrossRefPubMedGoogle Scholar
  25. 25.
    Li H, Gasbarrini A, Cappuccio M, Terzi S, Paderni S, Mirabile L, Boriani S (2009) Outcome of excisional surgeries for the patients with spinal metastases. Eur Spine J 18:1423–1430CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Boriani S, Bandiera S, Donthineni R, Amendola L, Cappuccio M, De Iure F, Gasbarrini A (2010) Morbidity of en bloc resections in the spine. Eur Spine J 19:231–241CrossRefPubMedGoogle Scholar
  27. 27.
    Cahill DW, Kumar R (1999) Palliative subtotal vertebrectomy with anterior and posterior reconstruction via a single posterior approach. J Neurosurg 90:42–47CrossRefPubMedGoogle Scholar
  28. 28.
    Zuckerman SL, Laufer I, Sahgal A, Yamada YJ, Schmidt MH, Chou D, Shin JH, Kumar N, Sciubba DM (2016) When less is more: the indications for MIS techniques and separation surgery in metastatic spine disease. Spine (Phila Pa 1976) 41(Suppl 20):S246–S253CrossRefGoogle Scholar
  29. 29.
    Guzik G (2016) Quality of life of patients after surgical treatment of cervical spine metastases. BMC Musculoskelet Disord 17:315CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Petteys RJ, Spitz SM, Goodwin CR, Abu-Bonsrah N, Bydon A, Witham TF, Wolinsky JP, Gokaslan ZL, Sciubba DM (2016) Factors associated with improved survival following surgery for renal cell carcinoma spinal metastases. Neurosurg Focus 41:E13CrossRefPubMedGoogle Scholar
  31. 31.
    Okamoto T, Neo M, Fujibayashi S, Ito H, Takemoto M, Nakamura T (2012) Mechanical implant failure in posterior cervical spine fusion. Eur Spine J 21:328–334CrossRefPubMedGoogle Scholar
  32. 32.
    Sanden B, Olerud C, Petren-Mallmin M, Johansson C, Larsson S (2004) The significance of radiolucent zones surrounding pedicle screws. Definition of screw loosening in spinal instrumentation. J Bone Jt Surg Br 86:457–461CrossRefGoogle Scholar
  33. 33.
    Schatzker J, Horne JG, Sumner-Smith G (1975) The effect of movement on the holding power of screws in bone. Clin Orthop Relat Res 111:257–262CrossRefGoogle Scholar
  34. 34.
    Aghayev E, Zullig N, Diel P, Dietrich D, Benneker LM (2014) Development and validation of a quantitative method to assess pedicle screw loosening in posterior spine instrumentation on plain radiographs. Eur Spine J 23:689–694CrossRefPubMedGoogle Scholar
  35. 35.
    Mahar AT, Brown DS, Oka RS, Newton PO (2006) Biomechanics of cantilever “plow” during anterior thoracic scoliosis correction. Spine J 6:572–576CrossRefPubMedGoogle Scholar
  36. 36.
    Schlenk RP, Stewart T, Benzel EC (2003) The biomechanics of iatrogenic spinal destabilization and implant failure. Neurosurg Focus 15:E2CrossRefPubMedGoogle Scholar
  37. 37.
    Gatt CJ Jr, Hosea TM, Palumbo RC, Zawadsky JP (1997) Impact loading of the lumbar spine during football blocking. Am J Sports Med 25:317–321CrossRefPubMedGoogle Scholar
  38. 38.
    Panjabi MM (1988) Biomechanical evaluation of spinal fixation devices: I. A conceptual framework. Spine (Phila Pa 1976) 13:1129–1134CrossRefGoogle Scholar
  39. 39.
    Kim T-K, Cho W, Youn SM, Chang U-K (2016) The effect of perioperative radiation therapy on spinal bone fusion following spine tumor surgery. J Korean Neurosurg Soc 59:597–603CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Tortolani PJ, Park AE, Louis-Ugbo J, Attallah-Wasef ES, Kraiwattanapong C, Heller JG, Boden SD, Yoon ST (2004) The effects of doxorubicin (adriamycin) on spinal fusion: an experimental model of posterolateral lumbar spinal arthrodesis. Spine J 4:669–674CrossRefPubMedGoogle Scholar
  41. 41.
    Mesfin A, Sciubba DM, Dea N, Nater A, Bird JE, Quraishi NA, Fisher CG, Shin JH, Fehlings MG, Kumar N, Clarke MJ (2016) Changing the adverse event profile in metastatic spine surgery: an evidence-based approach to target wound complications and instrumentation failure. Spine (Phila Pa 1976) 41(Suppl 20):S262–S270CrossRefGoogle Scholar
  42. 42.
    Oda K, Shibayama Y, Abe M, Onomura T (1998) Morphogenesis of vertebral deformities in involutional osteoporosis. Age-related, three-dimensional trabecular structure. Spine (Phila Pa 1976) 23:1050–1055 (discussion 1056) CrossRefGoogle Scholar
  43. 43.
    Rohlmann A, Graichen F, Bergmann G (2000) Influence of load carrying on loads in internal spinal fixators. J Biomech 33:1099–1104CrossRefPubMedGoogle Scholar
  44. 44.
    Rohlmann A, Graichen F, Weber U, Bergmann G (2000) 2000 Volvo Award winner in biomechanical studies: monitoring in vivo implant loads with a telemeterized internal spinal fixation device. Spine (Phila Pa 1976) 25:2981–2986CrossRefGoogle Scholar
  45. 45.
    Sasso RC, Renkens K, Hanson D, Reilly T, McGuire RA Jr, Best NM (2006) Unstable thoracolumbar burst fractures: anterior-only versus short-segment posterior fixation. J Spinal Disord Tech 19:242–248CrossRefPubMedGoogle Scholar
  46. 46.
    Ponnusamy KE, Iyer S, Gupta G, Khanna AJ (2011) Instrumentation of the osteoporotic spine: biomechanical and clinical considerations. Spine J 11:54–63CrossRefPubMedGoogle Scholar
  47. 47.
    Greenberg EJC, Chu FCH, Dwyer AJ, Ziminski EM, Dimich AB, Laughlin JS (1972) Effects of radiation therapy on bone lesions as measured by 47Ca and 85Sr local kinetics. J Nucl Med 13:747–751Google Scholar
  48. 48.
    Libshitz HI, Hortobagyi GN (1981) Radiographic evaluation of therapeutic response in bony metastases of breast cancer. Skelet Radiol 7:159–165CrossRefGoogle Scholar
  49. 49.
    Kumar N, Malhotra R, Maharajan K, Zaw AS, Wu PH, Makandura MC, Po Liu GK, Thambiah J, Wong HK (2017) Metastatic spine tumor surgery: a comparative study of minimally invasive approach using percutaneous pedicle screws fixation versus open approach. Clin Spine Surg 30(8):E1015–1021PubMedGoogle Scholar
  50. 50.
    Cunha SSD, Sarmento VA, Ramalho LMP, Freitas ACd, Almeida Dd, Tavares ME, Souza JC, Veeck EB, Costa NPd (2007) Effects of radiotherapy on bone tissues. Radiol Bras 40:189–192CrossRefGoogle Scholar
  51. 51.
    Siebler T, Shalet SM, Robson H (2002) Effects of chemotherapy on bone metabolism and skeletal growth. Horm Res 58(Suppl 1):80–85PubMedGoogle Scholar
  52. 52.
    Greep NC, Giuliano AE, Hansen NM, Taketani T, Wang HJ, Singer FR (2003) The effects of adjuvant chemotherapy on bone density in postmenopausal women with early breast cancer. Am J Med 114:653–659CrossRefPubMedGoogle Scholar
  53. 53.
    Boden SD (1998) The biology of posterolateral lumbar spinal fusion. Orthop Clin N Am 29:603–619CrossRefGoogle Scholar
  54. 54.
    Bouchard JA, Koka A, Bensusan JS, Stevenson S, Emery SE (1994) Effects of irradiation on posterior spinal fusions. A rabbit model. Spine (Phila Pa 1976) 19:1836–1841CrossRefGoogle Scholar
  55. 55.
    Pedreira R, Abu-Bonsrah N, Karim Ahmed A, De la Garza-Ramos R, Rory Goodwin C, Gokaslan ZL, Sacks J, Sciubba DM (2017) Hardware failure in patients with metastatic cancer to the spine. J Clin Neurosci 45:166–171CrossRefPubMedGoogle Scholar
  56. 56.
    Harel R, Chao S, Krishnaney A, Emch T, Benzel EC, Angelov L (2010) Spine instrumentation failure after spine tumor resection and radiation: comparing conventional radiotherapy with stereotactic radiosurgery outcomes. World Neurosurg 74:517–522CrossRefPubMedGoogle Scholar
  57. 57.
    Quraishi NA, Rajabian A, Spencer A, Arealis G, Mehdian H, Boszczyk BM, Edwards KL (2015) Reoperation rates in the surgical treatment of spinal metastases. Spine J 15:S37–S43CrossRefPubMedGoogle Scholar
  58. 58.
    Krag MH (1991) Biomechanics of thoracolumbar spinal fixation: a review. Spine 16:S84–S99CrossRefPubMedGoogle Scholar
  59. 59.
    Gercek E, Arlet V, Delisle J, Marchesi D (2003) Subsidence of stand-alone cervical cages in anterior interbody fusion: warning. Eur Spine J 12:513–516CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    de Ruiter GC, Lobatto DJ, Wolfs JF, Peul WC, Arts MP (2014) Reconstruction with expandable cages after single- and multilevel corpectomies for spinal metastases: a prospective case series of 60 patients. Spine J 14:2085–2093CrossRefPubMedGoogle Scholar
  61. 61.
    Chiu YC, Yang SC, Kao YH, Tu YK (2015) Single posterior approach for circumferential decompression and anterior reconstruction using cervical trabecular metal mesh cage in patients with metastatic spinal tumour. World J Surg Oncol 13:256CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Wilke HJ, Kemmerich V, Claes LE, Arand M (2001) Combined anteroposterior spinal fixation provides superior stabilisation to a single anterior or posterior procedure. J Bone Jt Surg Br 83:609–617CrossRefGoogle Scholar
  63. 63.
    Placantonakis DG, Laufer I, Wang JC, Beria JS, Boland P, Bilsky M (2008) Posterior stabilization strategies following resection of cervicothoracic junction tumors: review of 90 consecutive cases. J Neurosurg Spine 9:111–119CrossRefPubMedGoogle Scholar
  64. 64.
    Le H, Balabhadra R, Park J, Kim D (2003) Surgical treatment of tumors involving the cervicothoracic junction. Neurosurg Focus 15:1–7Google Scholar
  65. 65.
    Mazel C, Hoffmann E, Antonietti P, Grunenwald D, Henry M, Williams J (2004) Posterior cervicothoracic instrumentation in spine tumors. Spine (Phila Pa 1976) 29:1246–1253CrossRefGoogle Scholar
  66. 66.
    Mohi Eldin MM, Ali AM (2014) Lumbar transpedicular implant failure: a clinical and surgical challenge and its radiological assessment. Asian Spine J 8:281–297CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Vrionis FD, Small J (2003) Surgical management of metastatic spinal neoplasms. Neurosurg Focus 15:E12CrossRefPubMedGoogle Scholar
  68. 68.
    She C, Shi GL, Xu W, Zhou XZ, Li J, Tian Y, Li J, Li WH, Dong QR, Ren PG (2016) Effect of low-dose X-ray irradiation and Ti particles on the osseointegration of prosthetic. J Orthop Res 34:1688–1696CrossRefPubMedGoogle Scholar
  69. 69.
    Shen FH, Marks I, Shaffrey C, Ouellet J, Arlet V (2008) The use of an expandable cage for corpectomy reconstruction of vertebral body tumors through a posterior extracavitary approach: a multicenter consecutive case series of prospectively followed patients. Spine J 8:329–339CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Orthopaedic SurgeryNational University HospitalSingaporeSingapore
  2. 2.Department of Orthopaedic SurgeryKhoo Teck Puat HospitalSingaporeSingapore
  3. 3.Department of Orthopaedic SurgeryInselspital, University of BernBernSwitzerland
  4. 4.Department of Orthopaedic SurgeryUniversity Orthopaedics, Hand and Reconstructive Microsurgery ClusterSingaporeSingapore

Personalised recommendations