European Spine Journal

, Volume 27, Issue 2, pp 388–396 | Cite as

Asymmetrical trunk movement during walking improved to normal range at 3 months after corrective posterior spinal fusion in adolescent idiopathic scoliosis

  • Daniel A. C. F. Wong-Chung
  • Janneke J. P. Schimmel
  • Marinus de Kleuver
  • Noël L. W. Keijsers
Original Article

Abstract

Purpose

To investigate the effects of posterior spinal fusion (PSF) and curve type on upper body movements in Adolescent Idiopathic Scoliosis (AIS) patients during gait.

Methods

Twenty-four girls (12–18 years) with AIS underwent PSF. 3D-Gait-analyses were performed preoperatively, at 3 months and 1 year postoperatively. Mean position (0° represents symmetry) and range of motion (ROM) of the trunk (thorax-relative-to-pelvis) in all planes were assessed. Lower body kinematics and spatiotemporal parameters were also evaluated.

Results

Mean trunk position improved from 7.0° to 2.9° in transversal plane and from 5.0° to − 0.8° in frontal plane at 3 months postoperative (p < 0.001), and was maintained at 1 year. Trunk ROM in transverse plane decreased from 9.6° to 7.5° (p < 0.001) after surgery. No effects of PSF were observed on the lower body kinematics during the gait cycle. Patients with a double curve had a more axial rotated trunk before and after surgery (p = 0.013).

Conclusion

In AIS patients, during gait an evident asymmetrical position of the trunk improved to an almost symmetric situation already 3 months after PSF and was maintained at 1 year. Despite a reduction of trunk ROM, patients were able to maintain the same walking pattern in the lower extremities after surgery. This improvement of symmetry and maintenance of normal gait can explain the rapid recovery and well functioning in daily life of AIS patients, despite undergoing a fusion of large parts of their spine.

Keywords

Adolescent idiopathic scoliosis Spinal fusion Upper body kinematics Three-dimensional analysis Gait Curve type 

Notes

Compliance with ethical standards

Conflict of interest

We have no potential conflict of interest.

References

  1. 1.
    Chen PQ, Wang JL, Tsuang YH et al (1998) The postural stability control and gait pattern of idiopathic scoliosis adolescents. Clin Biomech 13(1):S52–S58CrossRefGoogle Scholar
  2. 2.
    Kramers-de Quervain IA, Müller R, Stacoff A et al (2004) Gait analysis in patients with idiopathic scoliosis. Eur Spine J 13(5):449–456CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Mahaudens P, Thonnard JL, Detrembleur C (2005) Influence of structural pelvic disorders during standing and walking in adolescents with idiopathic scoliosis. Spine J 5(4):427–433CrossRefPubMedGoogle Scholar
  4. 4.
    Engsberg JR, Bridwell KH, Reitenbach AK et al (2001) Preoperative gait comparisons between adults undergoing long spinal deformity fusion surgery (thoracic to L4, L5, or sacrum) and controls. Spine 26(18):2020–2028CrossRefPubMedGoogle Scholar
  5. 5.
    Yang JH, Suh SW, Sung PS et al (2013) Asymmetrical gait in adolescents with idiopathic scoliosis. Eur Spine J 22(11):2407–2413CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Nishida M, Nagura T, Fujita N et al (2017) Position of the major curve influences asymmetrical trunk kinematics during gait in adolescent idiopathic scoliosis. Gait Posture 51:142–148CrossRefPubMedGoogle Scholar
  7. 7.
    de Kleuver M, Lewis SJ, Germscheid NM et al (2014) Optimal surgical care for adolescent idiopathic scoliosis: an international consensus. Eur Spine J 23(12):2603–2618CrossRefPubMedGoogle Scholar
  8. 8.
    Engsberg JR, Lenke LG, Reitenbach AK et al (2002) Prospective evaluation of trunk range of motion in adolescents with idiopathic scoliosis undergoing spinal fusion surgery. Spine 27(12):1346–1354CrossRefPubMedGoogle Scholar
  9. 9.
    Engsberg JR, Lenke LG, Uhrich ML et al (2003) Prospective comparison of gait and trunk range of motion in adolescents with idiopathic thoracic scoliosis undergoing anterior or posterior spinal fusion. Spine 28(17):1993–2000CrossRefPubMedGoogle Scholar
  10. 10.
    Lenke LG, Engsberg JR, Ross SA et al (2001) Prospective dynamic functional evaluation of gait and spinal balance following spinal fusion in adolescent idiopathic scoliosis. Spine 26(14):E330–E337CrossRefPubMedGoogle Scholar
  11. 11.
    Mahaudens P, Detrembleur C, Mousny M et al (2010) Gait in thoracolumbar/lumbar adolescent idiopathic scoliosis: effect of surgery on gait mechanisms. Eur Spine J 19(7):1179–1188CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Schurr SA, Marshall AN, Resch JE, Saliba SA (2017) Two-dimensional video analysis is comparable to 3D motion in lower extremity movement assessment. Int J Sports Phys Ther 12(2):163PubMedPubMedCentralGoogle Scholar
  13. 13.
    Smith AC, Roberts JR, Wallace ES, Kong P, Forrester SE (2016) Comparison of two-and three-dimensional methods for analysis of trunk kinematic variables in the golf swing. J Appl Biomech 32(1):23–31CrossRefPubMedGoogle Scholar
  14. 14.
    Schimmel JJ, Groen BE, Weerdesteyn V et al (2015) Adolescent idiopathic scoliosis and spinal fusion do not substantially impact on postural balance. Scoliosis 10(1):1CrossRefGoogle Scholar
  15. 15.
    Watt JR, Franz JR, Jackson K, Dicharry J, Riley PO, Kerrigan DC (2010) A three-dimensional kinematic and kinetic comparison of overground and treadmill walking in healthy elderly subjects. Clin Biomech 25(5):444–449CrossRefGoogle Scholar
  16. 16.
    Holewijn RM, Kingma I, de Kleuver M, Schimmel JJP, Keijsers NLW (2017) Spinal fusion limits upper body range of motion during gait without inducing compensatory mechanisms in adolescent idiopathic scoliosis patients. Gait Posture 57:1–6CrossRefPubMedGoogle Scholar
  17. 17.
    Le Berre M, Guyot MA, Agnani O, Bourdeauducq I, Versyp MC, Donze C et al (2016) Clinical balance tests, proprioceptive system and adolescent idiopathic scoliosis. Eur Spine J 26(6):1638–1644.  https://doi.org/10.1007/s00586-016-4802-z CrossRefPubMedGoogle Scholar
  18. 18.
    Mahaudens P, Banse X, Mousny M et al (2009) Gait in adolescent idiopathic scoliosis: kinematics and electromyographic analysis. Eur Spine J 18(4):512–521CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Crosbie J, Vachalathiti R, Smith R (1997) Patterns of spinal motion during walking. Gait Posture 5(1):6–12CrossRefGoogle Scholar
  20. 20.
    Wilken JM, Rodriguez KM, Brawner M, Darter BJ (2012) Reliability and minimal detectible change values for gait kinematics and kinetics in healthy adults. Gait Posture 35(2):301–307CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Daniel A. C. F. Wong-Chung
    • 1
    • 2
  • Janneke J. P. Schimmel
    • 1
  • Marinus de Kleuver
    • 2
    • 3
  • Noël L. W. Keijsers
    • 1
  1. 1.Sint Maartenskliniek ResearchSint MaartenskliniekNijmegenThe Netherlands
  2. 2.Department of Orthopaedic SurgerySint MaartenskliniekNijmegenThe Netherlands
  3. 3.Department of Orthopaedic SurgeryRadboud University Medical CentreNijmegenThe Netherlands

Personalised recommendations