European Spine Journal

, Volume 27, Issue 2, pp 397–405 | Cite as

Three types of sagittal alignment regarding compensation in asymptomatic adults: the contribution of the spine and lower limbs

  • Hongda Bao
  • Renaud Lafage
  • Barthelemy Liabaud
  • Jonathan Elysée
  • Bassel G. Diebo
  • Gregory Poorman
  • Cyrus Jalai
  • Peter Passias
  • Aaron Buckland
  • Shay Bess
  • Thomas Errico
  • Lawrence G. Lenke
  • Munish Gupta
  • Han Jo Kim
  • Frank Schwab
  • Virginie Lafage
Original Article

Abstract

Purpose

A comprehensive understanding of normative sagittal profile is necessary for adult spinal deformity. Roussouly described four sagittal alignment types based on sacral slope, lumbar lordosis, and location of lumbar apex. However, the lower limb, a newly described component of spinal malalignment compensation, is missing from this classification. This study aims to propose a full-body sagittal profile classification in an asymptomatic population based on full-body imaging.

Methods

This is a retrospective analysis of a prospective single-center study of 116 asymptomatic volunteers. Cluster analysis including all sagittal parameters was first performed, and then ANOVA was performed between sub-clusters to eliminate the non-significantly different parameters. This loop was repeated until all parameters were significantly different between each sub-cluster.

Results

Three types of full-body sagittal profiles were finalized according to cluster analysis with ten radiographic parameters: hyperlordosis type (77 subjects), neutral type (28 subjects), and compensated type (11 subjects). Radiographic parameters included knee angle, pelvic shift, pelvic angle, PT, PI–LL, C7–S1 SVA, TPA, T1 slope, C2–C7 angle, and C2–C7 SVA. Age was significantly different across compensation types, while BMI and gender were comparable. Age-matched subjects were randomly selected with 11 subjects in each type. ANOVA analysis revealed that all parameters but PT and C2–C7 angle remained significantly different.

Conclusions

The current three compensation types of full-body sagittal profiles in asymptomatic adults included significant changes from cervical region to knee, indicating that subjects should be evaluated with full-length imaging. All three types exist regardless of age, but the distribution may vary.

Keywords

Asymptomatic volunteers Sagittal alignment Full-body profile Lower limbs 

Notes

Acknowledgements

The manuscript submitted does not contain information about medical device(s)/drug(s).

Compliance with ethical standards

Conflict of interest

All authors declare that they have no competing interest.

Supplementary material

586_2017_5159_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 kb)

References

  1. 1.
    Schwab F, Dubey A, Gamez L et al (2005) Adult scoliosis: prevalence, SF-36, and nutritional parameters in an elderly volunteer population. Spine (Phila Pa 1976) 30:1082–1085CrossRefGoogle Scholar
  2. 2.
    Lafage V, Schwab F, Patel A et al (2009) Pelvic tilt and truncal inclination: two key radiographic parameters in the setting of adults with spinal deformity. Spine (Phila Pa 1976) 34:E599–E606. doi: 10.1097/BRS.0b013e3181aad219 CrossRefGoogle Scholar
  3. 3.
    Nielsen D, Hansen L, Dragsted C, et al (2014) Clinical correlation of SRS-Schwab classification with HRQOL measures in a prospective non-US cohort of ASD patients. In: Int. Meet. Adv. Spine Tech. (IMAST), July 16–19Google Scholar
  4. 4.
    Schwab FJ, Ungar B, Blondel B et al (2012) Scoliosis Research Society-Schwab adult spinal deformity classification: a validation study. Spine (Phila Pa 1976) 37:1077–1082. doi: 10.1097/BRS.0b013e31823e15e2 CrossRefGoogle Scholar
  5. 5.
    Lafage R, Schwab F, Challier V et al (2016) Defining spino-pelvic alignment thresholds: should operative goals in adult spinal deformity surgery account for age? Spine (Phila Pa 1976) 41:62–68. doi: 10.1097/BRS.0000000000001171 CrossRefGoogle Scholar
  6. 6.
    Roussouly P, Pinheiro-Franco JL (2011) Biomechanical analysis of the spino-pelvic organization and adaptation in pathology. Eur Spine J 20(Suppl 5):1–10. doi: 10.1007/s00586-011-1928-x Google Scholar
  7. 7.
    Barrey C, Roussouly P, Perrin G, Le Huec J-C (2011) Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J 20(Suppl 5):626–633. doi: 10.1007/s00586-011-1930-3 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Iyer S, Lenke LG, Nemani VM et al (2016) Variations in occipitocervical and cervicothoracic alignment parameters based on age: a prospective study of asymptomatic volunteers using full-body radiographs. Spine (Phila Pa 1976). doi: 10.1097/BRS.0000000000001644 Google Scholar
  9. 9.
    Horton WC, Brown CW, Bridwell KH et al (2005) Is there an optimal patient stance for obtaining a lateral 36″ radiograph? A critical comparison of three techniques. Spine (Phila Pa 1976) 30:427–433CrossRefGoogle Scholar
  10. 10.
    Ilharreborde B, Steffen JS, Nectoux E et al (2011) Angle measurement reproducibility using EOS three-dimensional reconstructions in adolescent idiopathic scoliosis treated by posterior instrumentation. Spine (Phila Pa 1976) 36:E1306–E1313. doi: 10.1097/BRS.0b013e3182293548 CrossRefGoogle Scholar
  11. 11.
    Champain S, Benchikh K, Nogier A et al (2006) Validation of new clinical quantitative analysis software applicable in spine orthopaedic studies. Eur Spine J 15:982–991. doi: 10.1007/s00586-005-0927-1 CrossRefPubMedGoogle Scholar
  12. 12.
    Protopsaltis TS, Schwab FJ, Bronsard N et al (2014) The t1 pelvic angle, a novel radiographic measure of global sagittal deformity, accounts for both spinal inclination and pelvic tilt and correlates with health-related quality of life. J Bone Joint Surg Am 96:1631–1640. doi: 10.2106/JBJS.M.01459 CrossRefPubMedGoogle Scholar
  13. 13.
    Legaye J, Duval-Beaupère G, Hecquet J, Marty C (1998) Pelvic incidence: a fundamental pelvic parameter for three-dimensional regulation of spinal sagittal curves. Eur Spine J 7:99–103. doi: 10.1007/s005860050038 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lafage V, Schwab FJ, Skalli W et al (2008) Standing balance and sagittal plane spinal deformity: analysis of spinopelvic and gravity line parameters. Spine (Phila Pa 1976) 33:1572–1578. doi: 10.1097/BRS.0b013e31817886a2 CrossRefGoogle Scholar
  15. 15.
    Lafage R, Schwab F, Challier V et al (2016) Defining spino-pelvic alignment thresholds. Spine (Phila Pa 1976) 41:62–68. doi: 10.1097/BRS.0000000000001171 CrossRefGoogle Scholar
  16. 16.
    Hasegawa K, Okamoto M, Hatsushikano S et al (2016) Normative values of spino-pelvic sagittal alignment, balance, age, and health-related quality of life in a cohort of healthy adult subjects. Eur Spine J 25:3675–3686. doi: 10.1007/s00586-016-4702-2 CrossRefPubMedGoogle Scholar
  17. 17.
    Schwab F, Lafage R, Glassman S et al (2015) Age-adjusted alignment goals have the potential to reduce proximal junctional kyphosis. Spine J 15(10):S137. doi: 10.1016/j.spinee.2015.07.135 Google Scholar
  18. 18.
    Barrey CC, Roussouly P, Le Huec J-CC et al (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22(Suppl 6):S834–S841. doi: 10.1007/s00586-013-3030-z CrossRefPubMedGoogle Scholar
  19. 19.
    Diebo BG, Ferrero E, Lafage R et al (2015) Recruitment of compensatory mechanisms in sagittal spinal malalignment is age and regional deformity dependent: a full-standing axis analysis of key radiographical parameters. Spine (Phila Pa 1976) 40:642–649. doi: 10.1097/BRS.0000000000000844 CrossRefGoogle Scholar
  20. 20.
    Ferrero E, Liabaud B, Challier V et al (2015) Role of pelvic translation and lower-extremity compensation to maintain gravity line position in spinal deformity. J Neurosurg Spine. doi: 10.3171/2015.5.SPINE14989 PubMedGoogle Scholar
  21. 21.
    Le Huec JC, Hasegawa K (2016) Normative values for the spine shape parameters using 3D standing analysis from a database of 268 asymptomatic Caucasian and Japanese subjects. Eur Spine J 25:3630–3637. doi: 10.1007/s00586-016-4485-5 CrossRefPubMedGoogle Scholar
  22. 22.
    Lafage R, Liabaud B, Diebo B et al (2016) Defining the role of lower limbs in compensating for sagittal malalignment. Presented at AAOS, Orlando, FLGoogle Scholar
  23. 23.
    Buckland AJ, Vira S, Oren JH et al (2016) When is compensation for lumbar spinal stenosis a clinical sagittal plane deformity? Spine J 16:971–981. doi: 10.1016/j.spinee.2016.03.047 CrossRefPubMedGoogle Scholar
  24. 24.
    Kent P, Jensen RK, Kongsted A (2014) A comparison of three clustering methods for finding subgroups in MRI, SMS or clinical data: SPSS TwoStep Cluster analysis, Latent Gold and SNOB. BMC Med Res Methodol 14:113. doi: 10.1186/1471-2288-14-113 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Dolphens M, Cagnie B, Coorevits P et al (2013) Classification system of the sagittal standing alignment in young adolescent girls. Eur Spine J. doi: 10.1007/s00586-013-2952-9 Google Scholar
  26. 26.
    Sangeux M, Rodda J, Graham HK (2015) Sagittal gait patterns in cerebral palsy: the plantarflexor–knee extension couple index. Gait Posture 41:586–591. doi: 10.1016/j.gaitpost.2014.12.019 CrossRefPubMedGoogle Scholar
  27. 27.
    Hresko MT, Labelle H, Roussouly P, Berthonnaud E (2007) Classification of high-grade spondylolistheses based on pelvic version and spine balance: possible rationale for reduction. Spine (Phila Pa 1976) 32:2208–2213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Hongda Bao
    • 1
    • 2
  • Renaud Lafage
    • 2
  • Barthelemy Liabaud
    • 2
  • Jonathan Elysée
    • 2
  • Bassel G. Diebo
    • 2
  • Gregory Poorman
    • 3
  • Cyrus Jalai
    • 3
  • Peter Passias
    • 3
  • Aaron Buckland
    • 3
  • Shay Bess
    • 3
  • Thomas Errico
    • 3
  • Lawrence G. Lenke
    • 4
  • Munish Gupta
    • 5
  • Han Jo Kim
    • 2
  • Frank Schwab
    • 2
  • Virginie Lafage
    • 2
  1. 1.Nanjing Drum Tower HospitalNanjing UniversityNanjingChina
  2. 2.Hospital for Special SurgeryNew YorkUSA
  3. 3.Hospital for Joint Diseases at NYU Langone Medical CenterNew YorkUSA
  4. 4.The Spine Hospital New York-PresbyterianNew YorkUSA
  5. 5.Washington University School of MedicineSt. LouisUSA

Personalised recommendations