Advertisement

European Spine Journal

, Volume 26, Issue 5, pp 1408–1415 | Cite as

GEORG-SCHMORL-PRIZE OF THE GERMAN SPINE SOCIETY (DWG) 2016: Comparison of in vitro osteogenic potential of iliac crest and degenerative facet joint bone autografts for intervertebral fusion in lumbar spinal stenosis

  • Jeroen Geurts
  • Daniela Ramp
  • Stefan Schären
  • Cordula Netzer
Original Article

Abstract

Purpose

The promotion of spinal fusion using bone autografts is largely mediated by the osteoinductive potential of progenitors/mesenchymal stem cells (MSC) that reside in the marrow spaces of cancellous bone. Iliac crest is the common autograft donor site, but its use presents an increased risk for donor site pain, morbidity and infection. Degenerative bone samples harvested during facetectomy might provide an alternative viable source of osteoinductive autografts. In this study, we conducted an intra-individual comparison of the osteogenic potential of isolated low passage MSC from both sources.

Methods

Iliac crest and degenerative facet joints were harvested from eight consecutive patients undergoing transforaminal lumbar interspinal fusion due to lumbar spinal stenosis. MSC were isolated by collagenase digestion, selected by plastic adherence and minimally expanded for downstream assays. Clonogenic and osteogenic potential was evaluated by colony formation assays in control and osteogenic culture medium. Osteogenic properties, including alkaline phosphatase (ALP) induction, matrix mineralization and type I collagen mRNA and protein expression were characterized using quantitative histochemical staining and reverse transcription PCR. Spontaneous adipogenesis was analysed by adipocyte enumeration and gene expression analysis of adipogenic markers.

Results

Average colony-forming efficiency in osteogenic medium was equal between iliac crest (38 ± 12%) and facet joint (36 ± 11%). Osteogenic potential at the clonal level was 55 ± 26 and 68 ± 17% for iliac crest and facet joint MSC, respectively. Clonogenic and osteogenic potential were significantly negatively associated with donor age. Osteogenic differentiation led to significant induction of ALP activity in iliac crest (sixfold) and facet joint (eightfold) MSC. Matrix mineralization quantified by Alizarin red staining was increased by osteogenic differentiation, yet similar between both MSC sources. Protein expression of type I collagen was enhanced during osteogenesis and significantly greater in iliac crest MSC. Correspondingly, COL1A2 mRNA expression was higher in osteogenically differentiated MSC from iliac crest. Adipocyte numbers showed significant differences between iliac crest (63 ± 60) and facet joint (18 ± 15) MSC under osteogenic conditions. Negative (GREM1) and positive (FABP4) adipogenic markers were not differentially expressed between sources.

Conclusion

MSC from iliac crest and degenerative facet joints largely display similar clonogenic and osteogenic properties in vitro. Differences at the molecular level are not likely to impair the osteoinductive capacity of facet joint MSC. Bone autografts from facetectomy would be viable alternatives as bone autografts for intervertebral spinal fusion in lumbar spinal stenosis.

Keywords

Spinal fusion Bone graft Facetectomy Mesenchymal stem cell Osteogenesis 

Notes

Compliance with ethical standards

Conflict of interest

None of the authors has any potential conflict of interest.

Funding

This research was supported by a Grant from the Gottfried and Julia Bangerter-Rhyner Foundation to J.G. and C.N.

References

  1. 1.
    Niu CC, Tsai TT, Fu TS, Lai PL, Chen LH, Chen WJ (2009) A comparison of posterolateral lumbar fusion comparing autograft, autogenous laminectomy bone with bone marrow aspirate, and calcium sulphate with bone marrow aspirate: a prospective randomized study. Spine (Phila Pa 1976) 34:2715–2719. doi: 10.1097/BRS.0b013e3181b47232 CrossRefGoogle Scholar
  2. 2.
    Ito Z, Imagama S, Kanemura T, Hachiya Y, Miura Y, Kamiya M, Yukawa Y, Sakai Y, Katayama Y, Wakao N, Matsuyama Y, Ishiguro N (2013) Bone union rate with autologous iliac bone versus local bone graft in posterior lumbar interbody fusion (PLIF): a multicenter study. Eur Spine J 22:1158–1163. doi: 10.1007/s00586-012-2593-4 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Fu TS, Wang IC, Lu ML, Hsieh MK, Chen LH, Chen WJ (2016) The fusion rate of demineralized bone matrix compared with autogenous iliac bone graft for long multi-segment posterolateral spinal fusion. BMC Musculoskelet Disord 17:3. doi: 10.1186/s12891-015-0861-2 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Lee JH, Kong CB, Yang JJ, Shim HJ, Koo KH, Kim J, Lee CK, Chang BS (2016) Comparison of fusion rate and clinical results between CaO-SiO2-P2O5-B2O3 bioactive glass ceramics spacer with titanium cages in posterior lumbar interbody fusion. Spine J. doi: 10.1016/j.spinee.2016.07.531 Google Scholar
  5. 5.
    Summers BN, Eisenstein SM (1989) Donor site pain from the ilium. A complication of lumbar spine fusion. J Bone Jt Surg Br 71:677–680Google Scholar
  6. 6.
    Ahlmann E, Patzakis M, Roidis N, Shepherd L, Holtom P (2002) Comparison of anterior and posterior iliac crest bone grafts in terms of harvest-site morbidity and functional outcomes. J Bone Jt Surg Am 84(5):716–720CrossRefGoogle Scholar
  7. 7.
    Sasso RC, LeHuec JC, Shaffrey C, Spine Interbody Research G (2005) Iliac crest bone graft donor site pain after anterior lumbar interbody fusion: a prospective patient satisfaction outcome assessment. J Spinal Disord Tech 18(Suppl):S77–81CrossRefPubMedGoogle Scholar
  8. 8.
    Radcliff K, Hwang R, Hilibrand A, Smith HE, Gruskay J, Lurie JD, Zhao W, Albert T, Weinstein J (2012) The effect of iliac crest autograft on the outcome of fusion in the setting of degenerative spondylolisthesis: a subgroup analysis of the Spine Patient Outcomes Research Trial (SPORT). J Bone Jt Surg Am 94:1685–1692. doi: 10.2106/JBJS.K.00952 CrossRefGoogle Scholar
  9. 9.
    Scheerlinck LM, Muradin MS, van der Bilt A, Meijer GJ, Koole R, Van Cann EM (2013) Donor site complications in bone grafting: comparison of iliac crest, calvarial, and mandibular ramus bone. Int J Oral Maxillofac Implants 28:222–227. doi: 10.11607/jomi.2603 CrossRefPubMedGoogle Scholar
  10. 10.
    Chen WJ, Tsai TT, Chen LH, Niu CC, Lai PL, Fu TS, McCarthy K (2005) The fusion rate of calcium sulfate with local autograft bone compared with autologous iliac bone graft for instrumented short-segment spinal fusion. Spine (Phila Pa 1976) 30:2293–2297CrossRefGoogle Scholar
  11. 11.
    Ito Z, Matsuyama Y, Sakai Y, Imagama S, Wakao N, Ando K, Hirano K, Tauchi R, Muramoto A, Matsui H, Matsumoto T, Kanemura T, Yoshida G, Ishikawa Y, Ishiguro N (2010) Bone union rate with autologous iliac bone versus local bone graft in posterior lumbar interbody fusion. Spine (Phila Pa 1976) 35:E1101–E1105. doi: 10.1097/BRS.0b013e3181de4f2e CrossRefGoogle Scholar
  12. 12.
    Eder C, Chavanne A, Meissner J, Bretschneider W, Tuschel A, Becker P, Ogon M (2011) Autografts for spinal fusion: osteogenic potential of laminectomy bone chips and bone shavings collected via high speed drill. Eur Spine J 20:1791–1795. doi: 10.1007/s00586-011-1736-3 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    McLain RF, Fleming JE, Boehm CA, Muschler GF (2005) Aspiration of osteoprogenitor cells for augmenting spinal fusion: comparison of progenitor cell concentrations from the vertebral body and iliac crest. J Bone Jt Surg Am 87:2655–2661. doi: 10.2106/JBJS.E.00230 Google Scholar
  14. 14.
    Risbud MV, Shapiro IM, Guttapalli A, Di Martino A, Danielson KG, Beiner JM, Hillibrand A, Albert TJ, Anderson DG, Vaccaro AR (2006) Osteogenic potential of adult human stem cells of the lumbar vertebral body and the iliac crest. Spine (Phila Pa 1976) 31:83–89CrossRefGoogle Scholar
  15. 15.
    Niu CC, Lin SS, Yuan LJ, Chen LH, Pan TL, Yang CY, Lai PL, Chen WJ (2014) Identification of mesenchymal stem cells and osteogenic factors in bone marrow aspirate and peripheral blood for spinal fusion by flow cytometry and proteomic analysis. J Orthop Surg Res 9:32. doi: 10.1186/1749-799X-9-32 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Harada Y, Furukawa K, Asari T, Chin S, Ono A, Tanaka T, Mizukami H, Murakami M, Yagihashi S, Motomura S, Ishibashi Y (2014) Osteogenic lineage commitment of mesenchymal stem cells from patients with ossification of the posterior longitudinal ligament. Biochem Biophys Res Commun 443:1014–1020. doi: 10.1016/j.bbrc.2013.12.080 CrossRefPubMedGoogle Scholar
  17. 17.
    Kristjansson B, Limthongkul W, Yingsakmongkol W, Thantiworasit P, Jirathanathornnukul N, Honsawek S (2016) Isolation and characterization of human mesenchymal stem cells from facet joints and interspinous ligaments. Spine (Phila Pa 1976) 41:E1–E7. doi: 10.1097/BRS.0000000000001178 CrossRefGoogle Scholar
  18. 18.
    Kai Y, Oyama M, Morooka M (2004) Posterior lumbar interbody fusion using local facet joint autograft and pedicle screw fixation. Spine (Phila Pa 1976) 29:41–46. doi: 10.1097/01.BRS.0000103940.57588.50 CrossRefGoogle Scholar
  19. 19.
    Suri P, Hunter DJ, Rainville J, Guermazi A, Katz JN (2013) Presence and extent of severe facet joint osteoarthritis are associated with back pain in older adults. Osteoarthr Cartil 21:1199–1206. doi: 10.1016/j.joca.2013.05.013 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Appel H, Maier R, Loddenkemper C, Kayser R, Meier O, Hempfing A, Sieper J (2010) Immunohistochemical analysis of osteoblasts in zygapophyseal joints of patients with ankylosing spondylitis reveal repair mechanisms similar to osteoarthritis. J Rheumatol 37:823–828. doi: 10.3899/jrheum.090986 CrossRefPubMedGoogle Scholar
  21. 21.
    Netzer C, Urech K, Hugle T, Benz RM, Geurts J, Scharen S (2016) Characterization of subchondral bone histopathology of facet joint osteoarthritis in lumbar spinal stenosis. J Orthop Res 34:1475–1480. doi: 10.1002/jor.23281 CrossRefPubMedGoogle Scholar
  22. 22.
    Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC, Askin FB, Frassica FJ, Chang W, Yao J, Carrino JA, Cosgarea A, Artemov D, Chen Q, Zhao Z, Zhou X, Riley L, Sponseller P, Wan M, Lu WW, Cao X (2013) Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 19:704–712. doi: 10.1038/nm.3143 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Campbell TM, Churchman SM, Gomez A, McGonagle D, Conaghan PG, Ponchel F, Jones E (2016) Mesenchymal stem cell alterations in bone marrow lesions in patients with hip osteoarthritis. Arthritis Rheumatol 68:1648–1659. doi: 10.1002/art.39622 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Hunter DJ, Gerstenfeld L, Bishop G, Davis AD, Mason ZD, Einhorn TA, Maciewicz RA, Newham P, Foster M, Jackson S, Morgan EF (2009) Bone marrow lesions from osteoarthritis knees are characterized by sclerotic bone that is less well mineralized. Arthritis Res Ther 11:R11. doi: 10.1186/ar2601 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Couchourel D, Aubry I, Delalandre A, Lavigne M, Martel-Pelletier J, Pelletier JP, Lajeunesse D (2009) Altered mineralization of human osteoarthritic osteoblasts is attributable to abnormal type I collagen production. Arthritis Rheumatol 60:1438–1450. doi: 10.1002/art.24489 CrossRefGoogle Scholar
  26. 26.
    Frank O, Heim M, Jakob M, Barbero A, Schafer D, Bendik I, Dick W, Heberer M, Martin I (2002) Real-time quantitative RT-PCR analysis of human bone marrow stromal cells during osteogenic differentiation in vitro. J Cell Biochem 85:737–746. doi: 10.1002/jcb.10174 CrossRefPubMedGoogle Scholar
  27. 27.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedGoogle Scholar
  28. 28.
    Gregory CA, Gunn WG, Peister A, Prockop DJ (2004) An Alizarin red-based assay of mineralization by adherent cells in culture: comparison with cetylpyridinium chloride extraction. Anal Biochem 329:77–84. doi: 10.1016/j.ab.2004.02.002 CrossRefPubMedGoogle Scholar
  29. 29.
    Lopez-De Leon A, Rojkind M (1985) A simple micromethod for collagen and total protein determination in formalin-fixed paraffin-embedded sections. J Histochem Cytochem 33:737–743CrossRefPubMedGoogle Scholar
  30. 30.
    Ghali O, Broux O, Falgayrac G, Haren N, van Leeuwen JP, Penel G, Hardouin P, Chauveau C (2015) Dexamethasone in osteogenic medium strongly induces adipocyte differentiation of mouse bone marrow stromal cells and increases osteoblast differentiation. BMC Cell Biol 16:9. doi: 10.1186/s12860-015-0056-6 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Worthley DL, Churchill M, Compton JT, Tailor Y, Rao M, Si Y, Levin D, Schwartz MG, Uygur A, Hayakawa Y, Gross S, Renz BW, Setlik W, Martinez AN, Chen X, Nizami S, Lee HG, Kang HP, Caldwell JM, Asfaha S, Westphalen CB, Graham T, Jin G, Nagar K, Wang H, Kheirbek MA, Kolhe A, Carpenter J, Glaire M, Nair A, Renders S, Manieri N, Muthupalani S, Fox JG, Reichert M, Giraud AS, Schwabe RF, Pradere JP, Walton K, Prakash A, Gumucio D, Rustgi AK, Stappenbeck TS, Friedman RA, Gershon MD, Sims P, Grikscheit T, Lee FY, Karsenty G, Mukherjee S, Wang TC (2015) Gremlin 1 identifies a skeletal stem cell with bone, cartilage, and reticular stromal potential. Cell 160:269–284. doi: 10.1016/j.cell.2014.11.042 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kim JS, Ali MH, Wydra F, Li X, Hamilton JL, An HS, Cs-Szabo G, Andrews S, Moric M, Xiao G, Wang JH, Chen D, Cavanaugh JM, Im HJ (2015) Characterization of degenerative human facet joints and facet joint capsular tissues. Osteoarthr Cartil 23:2242–2251. doi: 10.1016/j.joca.2015.06.009 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Baboolal TG, Boxall SA, El-Sherbiny YM, Moseley TA, Cuthbert RJ, Giannoudis PV, McGonagle D, Jones E (2014) Multipotential stromal cell abundance in cellular bone allograft: comparison with fresh age-matched iliac crest bone and bone marrow aspirate. Regen Med 9:593–607. doi: 10.2217/rme.14.17 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Muschler GF, Nitto H, Boehm CA, Easley KA (2001) Age- and gender-related changes in the cellularity of human bone marrow and the prevalence of osteoblastic progenitors. J Orthop Res 19:117–125. doi: 10.1016/S0736-0266(00)00010-3 CrossRefPubMedGoogle Scholar
  35. 35.
    Bianco D, Todorov A Jr, Čengić T, Pagenstert GI, Hügle T, Forster-Horvath C, Martin I, Schären S, Geurts J (2016) Subchondral bone mesenchymal stromal cells from osteoarthritic lesions give rise to aberrant in vitro and in vivo mineralization. Osteoarthr Cartil 24:S133. doi: 10.1016/j.joca.2016.01.259 CrossRefGoogle Scholar
  36. 36.
    Paul J, Barg A, Kretzschmar M, Pagenstert G, Studler U, Hugle T, Wegner NJ, Valderrabano V, Geurts J (2015) Increased Osseous (99m)Tc-DPD uptake in end-stage ankle osteoarthritis: correlation between SPECT-CT imaging and histologic findings. Foot Ankle Int 36:1438–1447. doi: 10.1177/1071100715596745 CrossRefPubMedGoogle Scholar
  37. 37.
    Geurts J, Patel A, Hirschmann MT, Pagenstert GI, Muller-Gerbl M, Valderrabano V, Hugle T (2016) Elevated marrow inflammatory cells and osteoclasts in subchondral osteosclerosis in human knee osteoarthritis. J Orthop Res 34:262–269. doi: 10.1002/jor.23009 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Spine SurgeryUniversity Hospital BaselBaselSwitzerland
  2. 2.Department of Biomedical EngineeringUniversity of BaselBaselSwitzerland

Personalised recommendations