Skip to main content
Log in

Invariance of head-pelvis alignment and compensatory mechanisms for asymptomatic adults older than 49 years

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Purpose

The aim was to quantify the postural alignment of asymptomatic elderly, in comparison to a reference population, searching for possible invariants and compensatory mechanisms.

Methods

41 volunteers (49–76 years old) underwent bi-planar X-rays with 3D reconstructions of the spine and pelvis. Alignment parameters were compared with those of a reference group of asymptomatic subjects younger than 40 years old, with a particular focus on center of acoustic meati (CAM) and odontoid (OD) with regard to hip axis (HA). Possible markers of compensation were also investigated.

Results

No significant difference among groups appeared for CAM-HA and OD-HA parameters. Twenty four percent of elders had an abnormally high SVA value and twenty seven percent had an abnormal global spine inclination. Increased pelvic tilt and cervical lordosis allowed maintaining the head above the pelvis.

Conclusions

CAM-HA and OD-HA appeared quasi-invariant even in asymptomatic elderly. Some subjects exhibited alteration of spine alignment, compensated at the pelvis and cervical regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vital J-M, Senegas J (1986) Anatomical bases of the study of the constraints to which the cervical spine is subject in the sagittal plane. A study of the center of gravity of the head. Surg Radiol Anat 8:169–173. doi:10.1007/BF02427845

    Article  CAS  PubMed  Google Scholar 

  2. Dubousset J (1994) Three-dimensional analysis of the scoliotic deformity. In: Weinstein SL (ed) Pediatr. spine Princ. Pract., Wein-stei. Raven Press ltd, pp 479–496

  3. Dubousset J, Charpak G, Skalli W et al (2010) EOS: a new imaging system with low dose radiation in standing position for spine and bone & joint disorders. J Musculoskelet Res 13:1–12

    Article  Google Scholar 

  4. Amabile C, Pillet H, Lafage V et al (2016) A new invariant parameter characterizing the postural alignment of young healthy adults. Eur Spine J. doi:10.1007/s00586-016-4552-y

    Google Scholar 

  5. Barrey C, Roussouly P, Perrin G, Le Huec J-C (2011) Sagittal balance disorders in severe degenerative spine. Can we identify the compensatory mechanisms? Eur Spine J 20:626–633. doi:10.1007/s00586-011-1930-3

    Article  PubMed  PubMed Central  Google Scholar 

  6. Duval-Beaupère G, Schmidt C, Cosson P (1992) A Barycentremetric study of the sagittal shape of spine and pelvis: the conditions required for an economic standing position. Ann Biomed Eng 20:451–462

    Article  PubMed  Google Scholar 

  7. El Fegoun AB, Schwab F, Gamez L et al (2005) Center of gravity and radiographic posture analysis: a preliminary review of adult volunteers and adult patients affected by scoliosis. Spine (Phila Pa 1976) 30:1535–1540

    Article  Google Scholar 

  8. Vialle R, Levassor N, Rillardon L et al (2005) Radiographic analysis of the sagittal alignment and balance of the spine in asymptomatic subjects. J Bone Joint Surg Am 87:260–267. doi:10.2106/JBJS.D.02043

    Article  PubMed  Google Scholar 

  9. Schwab F, Lafage V, Boyce R et al (2006) Gravity line analysis in adult volunteers: age-related correlation with spinal parameters, pelvic parameters, and foot position. Spine (Phila Pa 1976) 31:E959–E967. doi:10.1097/01.brs.0000248126.96737.0f

    Article  Google Scholar 

  10. Lafage V, Schwab F, Skalli W et al (2008) Standing balance and sagittal plane spinal deformity: analysis of spinopelvic and gravity line parameters. Spine (Phila Pa 1976) 33:1572–1578

    Article  Google Scholar 

  11. Kim YB, Kim YJ, Ahn YJ et al (2014) A comparative analysis of sagittal spinopelvic alignment between young and old men without localized disc degeneration. Eur Spine J 23:1400–1406. doi:10.1007/s00586-014-3236-8

    Article  PubMed  Google Scholar 

  12. Gangnet N, Pomero V, Dumas R et al (2003) Variability of the spine and pelvis location with respect to the gravity line: a three-dimensional stereoradiographic study using a force platform. Surg Radiol Anat 25:424–433. doi:10.1007/s00276-003-0154-6

    Article  CAS  PubMed  Google Scholar 

  13. Le Huec J-C, Demezon H, Aunoble S (2014) Sagittal parameters of global cervical balance using EOS imaging: normative values from a prospective cohort of asymptomatic volunteers. Eur Spine J 24:63–71. doi:10.1007/s00586-014-3632-0

    Article  PubMed  Google Scholar 

  14. Steffen J-S, Obeid I, Aurouer N et al (2010) 3D postural balance with regard to gravity line: an evaluation in the transversal plane on 93 patients and 23 asymptomatic volunteers. Eur Spine J 19:760–767. doi:10.1007/s00586-009-1249-5

    Article  PubMed  Google Scholar 

  15. Iyer S, Lenke LG, Nemani VM et al (2016) Variations in sagittal alignment parameters based on age: a prospective study of asymptomatic volunteers using full-body radiographs. Spine (Phila Pa 1976). doi:10.1097/BRS.0000000000001642

    Google Scholar 

  16. Fairbank JC, Couper J, Davies JB, O’Brien JP (1980) The Oswestry low back pain disability questionnaire. Physiotherapy 66:271–273

    CAS  PubMed  Google Scholar 

  17. Million R, Hall R, Nilsen K, Baker R (1982) Assessment of the progress of the back-pain patient. Spine (Phila Pa 1976) 7:204–212

    Article  CAS  Google Scholar 

  18. Faro FD, Marks MC, Pawelek J, Newton PO (2004) Evaluation of a functional position for lateral radiograph acquisition in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 29:2284–2289. doi:10.1097/01.brs.0000142224.46796.a7

    Article  Google Scholar 

  19. Chaibi Y, Cresson T, Aubert B et al (2012) Fast 3D reconstruction of the lower limb using a parametric model and statistical inferences and clinical measurements calculation from biplanar X-rays. Comput Methods Biomech Biomed Engin 15:457–466. doi:10.1080/10255842.2010.540758

    Article  CAS  PubMed  Google Scholar 

  20. Mitton D, Deschênes S, Laporte S et al (2006) 3D reconstruction of the pelvis from biplanar radiography. Comput Methods Biomech Biomed Engin 9:1–5

    Article  CAS  PubMed  Google Scholar 

  21. Humbert L, De Guise JA, Godbout B et al (2009) Fast 3D reconstruction of the spine from biplanar radiography: a diagnosis tool for routine scoliosis diagnosis and research in biomechanics. Comput Methods Biomech Biomed Engin 12:151–163. doi:10.1080/10255840903081222

    Article  Google Scholar 

  22. Quijano S, Serrurier A, Aubert B et al (2013) Three-dimensional reconstruction of the lower limb from biplanar calibrated radiographs. Med Eng Phys 35:1703–1712. doi:10.1016/j.medengphy.2013.07.002

    Article  CAS  PubMed  Google Scholar 

  23. Lilliefors HW (1967) On the Kolmogorov–Smirnov test for normality with mean and variance. J Am Stat Assoc 62:399–402

    Article  Google Scholar 

  24. Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976) 30:346–353

    Article  Google Scholar 

  25. Barrey C, Roussouly P, Le Huec J-C et al (2013) Compensatory mechanisms contributing to keep the sagittal balance of the spine. Eur Spine J 22:S834–S841. doi:10.1007/s00586-013-3030-z

    Article  PubMed  Google Scholar 

  26. Diebo B, Ferrero E, Lafage R et al (2015) Recruitment of compensatory mechanisms in sagittal spinal malalignment is age and regional deformity dependent: a full-standing axis analysis of key radiographical parameters. Spine (Phila Pa 1976) 40:642–649. doi:10.1097/BRS.0000000000000844

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Banque Public d’Investissement for financial support through the dexEOS project part of the French FUI14 program. Authors thank the ParisTech BiomecAM chair program on subject-specific musculoskeletal modeling, and in particular COVEA and Société Générale. The authors thank EOS Imaging for their help in the data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wafa Skalli.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amabile, C., Le Huec, JC. & Skalli, W. Invariance of head-pelvis alignment and compensatory mechanisms for asymptomatic adults older than 49 years. Eur Spine J 27, 458–466 (2018). https://doi.org/10.1007/s00586-016-4830-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-016-4830-8

Keywords

Navigation