Advertisement

European Spine Journal

, Volume 26, Issue 5, pp 1418–1431 | Cite as

Percutaneous versus traditional and paraspinal posterior open approaches for treatment of thoracolumbar fractures without neurologic deficit: a meta-analysis

Review Article

Abstract

Purpose

This study evaluated differences in outcome variables between percutaneous, traditional, and paraspinal posterior open approaches for traumatic thoracolumbar fractures without neurologic deficit.

Methods

A systematic review of PubMed, Cochrane, and Embase was performed. In this meta-analysis, we conducted online searches of PubMed, Cochrane, Embase using the search terms “thoracolumbar fractures”, “lumbar fractures”, ‘‘percutaneous’’, “minimally invasive”, ‘‘open”, “traditional”, “posterior”, “conventional”, “pedicle screw”, “sextant”, and “clinical trial”. The analysis was performed on individual patient data from all the studies that met the selection criteria. Clinical outcomes were expressed as risk difference for dichotomous outcomes and mean difference for continuous outcomes with 95 % confidence interval. Heterogeneity was assessed using the χ 2 test and I 2 statistics.

Results

There were 4 randomized controlled trials and 14 observational articles included in this analysis. Percutaneous approach was associated with better ODI score, less Cobb angle correction, less Cobb angle correction loss, less postoperative VBA correction, and lower infection rate compared with open approach. Percutaneous approach was also associated with shorter operative duration, longer intraoperative fluoroscopy, less postoperative VAS, and postoperative VBH% in comparison with traditional open approach. No significant difference was found in Cobb angle correction, postoperative VBA, VBA correction loss, Postoperative VBH%, VBH correction loss, and pedicle screw misplacement between percutaneous approach and open approach. There was no significant difference in operative duration, intraoperative fluoroscopy, postoperative VAS, and postoperative VBH% between percutaneous approach and paraspianl approach.

Conclusions

The functional and the radiological outcome of percutaneous approach would be better than open approach in the long term. Although trans-muscular spatium approach belonged to open fixation methods, it was strictly defined as less invasive approach, which provided less injury to the paraspinal muscles and better reposition effect.

Keywords

Percutaneous Open Paraspinal Thoracolumbar fractures Meta-analysis 

Notes

Acknowledgments

The authors would like to thank Professor Yong Hai and Xiang-Yao Sun who provided data support and corrected some mistakes.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

There is no funding source.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Informed consent was obtained from all researches included in the study.

References

  1. 1.
    Sihvonen T, Herno A, Paljarvi L, Airaksinen O, Partanen J, Tapaninaho A (1993) Local denervation atrophy of paraspinal muscles in postoperative failed back syndrome. Spine (Phila Pa 1976) 18:575–581Google Scholar
  2. 2.
    Muller U, Berlemann U, Sledge J, Schwarzenbach O (1999) Treatment of thoracolumbar burst fractures without neurologic deficit by indirect reduction and posterior instrumentation: bisegmental stabilization with monosegmental fusion. Eur Spine J 8:284–289CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184–201CrossRefPubMedGoogle Scholar
  4. 4.
    De Iure F, Cappuccio M, Paderni S, Bosco G, Amendola L (2012) Minimal invasive percutaneous fixation of thoracic and lumbar spine fractures. Minim Invasive Surg 2012:141032. doi: 10.1155/2012/141032 PubMedPubMedCentralGoogle Scholar
  5. 5.
    Verlaan JJ, Diekerhof CH, Buskens E, van der Tweel I, Verbout AJ, Dhert WJ, Oner FC (2004) Surgical treatment of traumatic fractures of the thoracic and lumbar spine: a systematic review of the literature on techniques, complications, and outcome. Spine (Phila Pa 1976) 29:803–814Google Scholar
  6. 6.
    Lee JK, Jang JW, Kim TW, Kim TS, Kim SH, Moon SJ (2013) Percutaneous short-segment pedicle screw placement without fusion in the treatment of thoracolumbar burst fractures: is it effective? Comparative study with open short-segment pedicle screw fixation with posterolateral fusion. Acta Neurochir (Wien) 155(2305–2312):2312. doi: 10.1007/s00701-013-1859-x Google Scholar
  7. 7.
    Lyu J, Chen K, Tang Z, Chen Y, Li M, Zhang Q (2016) A comparison of three different surgical procedures in the treatment of type A thoracolumbar fractures: a randomized controlled trial. Int Orthop. doi: 10.1007/s00264-016-3129-z PubMedGoogle Scholar
  8. 8.
    Zairi F, Court C, Tropiano P, Charles YP, Tonetti J, Fuentes S, Litrico S, Deramond H, Beaurain J, Orcel P, Delecrin J, Aebi M, Assaker R (2012) Minimally invasive management of thoraco-lumbar fractures: combined percutaneous fixation and balloon kyphoplasty. Orthop Traumatol Surg Res 98:S105–S111. doi: 10.1016/j.otsr.2012.06.004 CrossRefPubMedGoogle Scholar
  9. 9.
    McAnany SJ, Overley SC, Kim JS, Baird EO, Qureshi SA, Anderson PA (2016) Open versus minimally invasive fixation techniques for thoracolumbar trauma: a meta-analysis. Global Spine J 6:186–194. doi: 10.1055/s-0035-1554777 CrossRefPubMedGoogle Scholar
  10. 10.
    Phan K, Rao PJ, Mobbs RJ (2015) Percutaneous versus open pedicle screw fixation for treatment of thoracolumbar fractures: systematic review and meta-analysis of comparative studies. Clin Neurol Neurosurg 135:85–92. doi: 10.1016/j.clineuro.2015.05.016 CrossRefPubMedGoogle Scholar
  11. 11.
    Wang H, Zhou Y, Li C, Liu J, Xiang L (2016) Comparison of open versus percutaneous pedicle screw fixation using the sextant system in the treatment of traumatic thoracolumbar fractures. Clin Spine Surg. doi: 10.1097/BSD.0000000000000135 Google Scholar
  12. 12.
    Cheng HQ, Li GQ, Sun SH, Ma WH, Ruan CY, Zhao HG, Xu RM (2015) Mini-open trans-spatium intermuscular versus percutaneous short-segment pedicle fixation for the treatment of thoracolumbar mono-segmental vertebral fractures. Zhongguo Gu Shang 28:1008–1012PubMedGoogle Scholar
  13. 13.
    Chi YL, Xu HZ, Lin Y, Huang QS, Mao FM, Ni WF (2004) Preliminary study of the technique of minimally invasive percutaneous pedicle screws osteosynthesis for treatment of thoraco-lumbar vertebra fracture. Zhonghua Wai Ke Za Zhi 42:1307–1311PubMedGoogle Scholar
  14. 14.
    Dong SH, Chen HN, Tian JW, Xia T, Wang L, Zhao QH, Liu CY (2013) Effects of minimally invasive percutaneous and trans-spatium intermuscular short-segment pedicle instrumentation on thoracolumbar mono-segmental vertebral fractures without neurological compromise. Orthop Traumatol Surg Res 99:405–411. doi: 10.1016/j.otsr.2012.12.020 CrossRefPubMedGoogle Scholar
  15. 15.
    Grass R, Biewener A, Dickopf A, Rammelt S, Heineck J, Zwipp H (2006) Percutaneous dorsal versus open instrumentation for fractures of the thoracolumbar border. A comparative, prospective study. Unfallchirurg 109:297–305. doi: 10.1007/s00113-005-1037-6 CrossRefPubMedGoogle Scholar
  16. 16.
    Grossbach AJ, Dahdaleh NS, Abel TJ, Woods GD, Dlouhy BJ, Hitchon PW (2013) Flexion-distraction injuries of the thoracolumbar spine: open fusion versus percutaneous pedicle screw fixation. Neurosurg Focus 35:E2. doi: 10.3171/2013.6.FOCUS13176 CrossRefPubMedGoogle Scholar
  17. 17.
    Jiang XZ, Tian W, Liu B, Li Q, Zhang GL, Hu L, Li Z, He D (2012) Comparison of a paraspinal approach with a percutaneous approach in the treatment of thoracolumbar burst fractures with posterior ligamentous complex injury: a prospective randomized controlled trial. J Int Med Res 40:1343–1356CrossRefPubMedGoogle Scholar
  18. 18.
    Ma YQ, Li XL, Dong J, Wang HR, Zhou XG, Li C (2012) Comparison of percutaneous versus open monosegment instrumentation in the treatment of incomplete thoracolumbar burst fracture. Zhonghua Yi Xue Za Zhi 92:904–908PubMedGoogle Scholar
  19. 19.
    Ming JH, Zheng HF, Zhao Q, Chen Q, Wang G (2014) Sextant percutaneous pedicle screw fixation for correcting single-segment thoracolumbar fractures. Chin J Tissue Eng Res 18:5654–5659Google Scholar
  20. 20.
    Nie FF, Zhang YH, Huang SG, Ju L, Chen B (2014) Minimally invasive percutaneous pedicle screw fixation versus open surgery for thoracolumbar fracture: Cobb’s angle and vertebral height. Chin J Tissue Eng Res 18:7094–7099Google Scholar
  21. 21.
    Peng XZ, Xiao KK (2014) Minimally invasive versus open pedicle screw fixation for repair of thoracolumbar fractures. Chin J Tissue Eng Res 18:4212–4218Google Scholar
  22. 22.
    Fitschen-Oestern S, Scheuerlein F, Weuster M, Klueter T, Menzdorf L, Varoga D, Kopetsch C, Mueller M, van der Horst A, Seekamp A, Behrendt P, Lippross S (2015) Reduction and retention of thoracolumbar fractures by minimally invasive stabilisation versus open posterior instrumentation. Injury 46(Suppl 4):S63–S70. doi: 10.1016/S0020-1383(15)30020-6 CrossRefPubMedGoogle Scholar
  23. 23.
    Tian W, Han X, He D, Liu B, Li Q, Li ZY, Liu YJ, Li N (2011) The comparison of computer assisted minimally invasive spine surgery and traditional open treatment for thoracolumbar fractures. Zhonghua Wai Ke Za Zhi 49:1061–1066PubMedGoogle Scholar
  24. 24.
    Vanek P, Bradac O, Konopkova R, de Lacy P, Lacman J, Benes V (2014) Treatment of thoracolumbar trauma by short-segment percutaneous transpedicular screw instrumentation: prospective comparative study with a minimum 2-year follow-up. J Neurosurg Spine 20:150–156. doi: 10.3171/2013.11.SPINE13479 CrossRefPubMedGoogle Scholar
  25. 25.
    Wild MH, Glees M, Plieschnegger C, Wenda K (2007) Five-year follow-up examination after purely minimally invasive posterior stabilization of thoracolumbar fractures: a comparison of minimally invasive percutaneously and conventionally open treated patients. Arch Orthop Trauma Surg 127:335–343. doi: 10.1007/s00402-006-0264-9 CrossRefPubMedGoogle Scholar
  26. 26.
    Xue F, Fu ZG, Zhang DY, Zhang PX, Zhou J, Jiang BG (2013) Minimal invasive internal fixation with U-shaped break-off pedicle screws for treatment of thoracolumbar fractures. Beijing Da Xue Xue Bao 45:728–731PubMedGoogle Scholar
  27. 27.
    Wiltse LL, Bateman JG, Hutchinson RH, Nelson WE (1968) The paraspinal sacrospinalis-splitting approach to the lumbar spine. J Bone Joint Surg Am 50:919–926CrossRefPubMedGoogle Scholar
  28. 28.
    Pang W, Zhang GL, Tian W, Sun D, Li N, Yuan Q, Zhang B, Wang YQ, Liu W (2009) Surgical treatment of thoracolumbar fracture through an approach via the paravertebral muscle. Orthop Surg 1:184–188. doi: 10.1111/j.1757-7861.2009.00032.x CrossRefPubMedGoogle Scholar
  29. 29.
    Assaker R (2004) Minimal access spinal technologies: state-of-the-art, indications, and techniques. Joint Bone Spine 71:459–469. doi: 10.1016/j.jbspin.2004.08.006 CrossRefPubMedGoogle Scholar
  30. 30.
    Palmisani M, Gasbarrini A, Brodano GB, De Iure F, Cappuccio M, Boriani L, Amendola L, Boriani S (2009) Minimally invasive percutaneous fixation in the treatment of thoracic and lumbar spine fractures. Eur Spine J 18(Suppl 1):71–74. doi: 10.1007/s00586-009-0989-6 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Tezer M, Erturer RE, Ozturk C, Ozturk I, Kuzgun U (2005) Conservative treatment of fractures of the thoracolumbar spine. Int Orthop 29:78–82. doi: 10.1007/s00264-004-0619-1 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Lehmann W, Ushmaev A, Ruecker A, Nuechtern J, Grossterlinden L, Begemann PG, Baeumer T, Rueger JM, Briem D (2008) Comparison of open versus percutaneous pedicle screw insertion in a sheep model. Eur Spine J 17:857–863. doi: 10.1007/s00586-008-0652-7 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Vaccaro AR, Lehman RJ, Hurlbert RJ, Anderson PA, Harris M, Hedlund R, Harrop J, Dvorak M, Wood K, Fehlings MG, Fisher C, Zeiller SC, Anderson DG, Bono CM, Stock GH, Brown AK, Kuklo T, Oner FC (2005) A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine (Phila Pa 1976) 30:2325–2333Google Scholar
  34. 34.
    Kumar A, Aujla R, Lee C (2015) The management of thoracolumbar burst fractures: a prospective study between conservative management, traditional open spinal surgery and minimally interventional spinal surgery. Springerplus 4:204. doi: 10.1186/s40064-015-0960-4 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Dai LY, Jiang LS, Jiang SD (2009) Posterior short-segment fixation with or without fusion for thoracolumbar burst fractures. a five to seven-year prospective randomized study. J Bone Joint Surg Am 91:1033–1041. doi: 10.2106/JBJS.H.00510 CrossRefPubMedGoogle Scholar
  36. 36.
    Cimatti M, Forcato S, Polli F, Miscusi M, Frati A, Raco A (2013) Pure percutaneous pedicle screw fixation without arthrodesis of 32 thoraco-lumbar fractures: clinical and radiological outcome with 36-month follow-up. Eur Spine J 22(Suppl 6):S925–S932. doi: 10.1007/s00586-013-3016-x CrossRefPubMedGoogle Scholar
  37. 37.
    Pishnamaz M, Oikonomidis S, Knobe M, Horst K, Pape HC, Kobbe P (2015) Open versus percutaneous stabilization of thoracolumbar spine fractures: a short-term functional and radiological follow-up. Acta Chir Orthop Traumatol Cech 82:274–281PubMedGoogle Scholar
  38. 38.
    Park Y, Ha JW, Lee YT, Sung NY (2011) Percutaneous placement of pedicle screws in overweight and obese patients. Spine J 11:919–924. doi: 10.1016/j.spinee.2011.07.029 CrossRefPubMedGoogle Scholar
  39. 39.
    Youkilis AS, Quint DJ, McGillicuddy JE, Papadopoulos SM (2001) Stereotactic navigation for placement of pedicle screws in the thoracic spine. Neurosurgery 48(771–778):778–779Google Scholar
  40. 40.
    Fraser J, Gebhard H, Irie D, Parikh K, Hartl R (2010) Iso-C/3-dimensional neuronavigation versus conventional fluoroscopy for minimally invasive pedicle screw placement in lumbar fusion. Minim Invasive Neurosurg 53:184–190. doi: 10.1055/s-0030-1267926 CrossRefPubMedGoogle Scholar
  41. 41.
    Tenney JH, Vlahov D, Salcman M, Ducker TB (1985) Wide variation in risk of wound infection following clean neurosurgery. Implications for perioperative antibiotic prophylaxis. J Neurosurg 62:243–247. doi: 10.3171/jns.1985.62.2.0243 CrossRefPubMedGoogle Scholar
  42. 42.
    Milstone AM, Maragakis LL, Townsend T, Speck K, Sponseller P, Song X, Perl TM (2008) Timing of preoperative antibiotic prophylaxis: a modifiable risk factor for deep surgical site infections after pediatric spinal fusion. Pediatr Infect Dis J 27:704–708. doi: 10.1097/INF.0b013e31816fca72 CrossRefPubMedGoogle Scholar
  43. 43.
    Picada R, Winter RB, Lonstein JE, Denis F, Pinto MR, Smith MD, Perra JH (2000) Postoperative deep wound infection in adults after posterior lumbosacral spine fusion with instrumentation: incidence and management. J Spinal Disord 13:42–45CrossRefPubMedGoogle Scholar
  44. 44.
    Kuo CH, Wang ST, Yu WK, Chang MC, Liu CL, Chen TH (2004) Postoperative spinal deep wound infection: a six-year review of 3230 selective procedures. J Chin Med Assoc 67:398–402PubMedGoogle Scholar
  45. 45.
    Abt NB, De la Garza-Ramos R, Olorundare IO, McCutcheon BA, Bydon A, Fogelson J, Nassr A, Bydon M (2016) Thirty day postoperative outcomes following anterior lumbar interbody fusion using the National Surgical Quality Improvement Program database. Clin Neurol Neurosurg 143:126–131. doi: 10.1016/j.clineuro.2016.02.024 CrossRefPubMedGoogle Scholar
  46. 46.
    Kang DG, Holekamp TF, Wagner SC, Lehman RJ (2015) Intrasite vancomycin powder for the prevention of surgical site infection in spine surgery: a systematic literature review. Spine J 15:762–770. doi: 10.1016/j.spinee.2015.01.030 CrossRefPubMedGoogle Scholar
  47. 47.
    Tian NF, Wu YS, Zhang XL, Wu XL, Chi YL, Mao FM (2013) Fusion versus nonfusion for surgically treated thoracolumbar burst fractures: a meta-analysis. PLoS One 8:e63995. doi: 10.1371/journal.pone.0063995 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Orthopedics, Beijing Chaoyang HospitalChina Capital Medical UniversityBeijingChina

Personalised recommendations