Advertisement

European Spine Journal

, Volume 26, Issue 5, pp 1401–1407 | Cite as

EUROSPINE 2016 FULL PAPER AWARD: Wire cerclage can restore the stability of the thoracic spine after median sternotomy: an in vitro study with entire rib cage specimens

  • Christian Liebsch
  • Nicolas Graf
  • Hans-Joachim Wilke
ORIGINAL ARTICLE

Abstract

Purpose

The influence of the anterior rib cage on the stability of the human thoracic spine is not completely known. One of the most common surgical interventions on the anterior rib cage is the longitudinal median sternotomy and its fixation by wire cerclage. Therefore, the purpose of this in vitro study was to examine, if wire cerclage can restore the stability of the human thoracic spine after longitudinal median sternotomy.

Methods

Six fresh frozen human thoracic spine specimens (C7–L1, 56 years in average, range 50–65), including the intact rib cage without intercostal muscles, were tested in a spinal loading simulator and monitored with an optical motion tracking system. While applying 2 Nm pure moment in flexion/extension (FE), lateral bending (LB), and axial rotation (AR), the range of motion (ROM) and neutral zone (NZ) of the functional spinal units of the thoracic spine (T1–T12) were studied (1) in intact condition, (2) after longitudinal median sternotomy, and (3) after sternal closure using wire cerclage.

Results

The longitudinal median sternotomy caused a significant increase of the thoracic spine ROM relative to the intact condition (FE: 12° ± 5°, LB: 18° ± 5°, AR: 25° ± 10°) in FE (+12 %) and AR (+22 %). As a result, the sagittal cut faces of the sternum slipped apart visibly. Wire cerclage fixation resulted in a significant decrease of the ROM in AR (−12 %) relative to condition after sternotomy. ROM increased relative to the intact condition, in AR even significantly (+8 %). The NZ showed a proportional behavior compared to the ROM in all loading planes, but it was distinctly higher in FE (72 %) and in LB (82 %) compared to the ROM than in AR (12 %).

Conclusions

In this in vitro study, the longitudinal median sternotomy resulted in a destabilization of the thoracic spine and relative motion of the sternal cut faces, which could be rectified by fixation with wire cerclage. However, the stability of the intact condition could not be reached. Nevertheless, a fixation of the sternum should be considered clinically to avoid instability of the spine and sternal pseudarthrosis.

Keywords

Thoracic spine Rib cage Longitudinal median sternotomy Wire cerclage In vitro study 

Notes

Acknowledgments

We gratefully acknowledge funding from the German Research Foundation (DFG) Project WI 1352/20-1. We would like to thank Tobias Böckers, Ulrich Fassnacht, and Ernst Voigt from the Institute of Anatomy and Cell Biology, School of Medicine/University of Ulm, for their support and David Volkheimer for carefully reading the manuscript.

Compliance with ethical standards

The study was approved by the ethical committee board of the University of Ulm (No. 302/14).

Conflict of interest

The authors have no conflicts of interest to disclose.

References

  1. 1.
    Andriacchi T, Schultz A, Belytschko T, Galante J (1974) A model for studies of mechanical interactions between the human spine and rib cage. J Biomech 7(6):497–507CrossRefPubMedGoogle Scholar
  2. 2.
    Feiertag MA, Horton WC, Norman JT, Proctor FC, Hutton WC (1995) The effect of different surgical releases on thoracic spinal motion: a cadaveric study. Spine (Phila Pa 1976) 20(14):1604–1611CrossRefGoogle Scholar
  3. 3.
    Oda I, Abumi K, Lü D, Shono Y, Kaneda K (1996) Biomechanical role of the posterior elements, costovertebral joints, and rib cage in the stability of the thoracic spine. Spine (Phila Pa 1976) 21(12):1423–1429CrossRefGoogle Scholar
  4. 4.
    Takeuchi T, Abumi K, Shono Y, Oda I, Kaneda K (1999) Biomechanical role of the intervertebral disc and costovertebral joint in stability of the thoracic spine: a canine model study. Spine (Phila Pa 1976) 24(14):1414–1420CrossRefGoogle Scholar
  5. 5.
    Oda I, Abumi K, Cunningham BW, Kaneda K, McAfee PC (2002) An in vitro human cadaveric study investigating the biomechanical properties of the thoracic spine. Spine (Phila Pa 1976) 27(3):E64–E70CrossRefGoogle Scholar
  6. 6.
    Horton WC, Kraiwattanapong C, Akamaru T, Minamide A, Park JS, Park MS, Hutton WC (2005) The role of the sternum, costosternal articulations, intervertebral disc, and facets in thoracic sagittal plane biomechanics: a comparison of three different sequences of surgical release. Spine (Phila Pa 1976) 30(18):2014–2023CrossRefGoogle Scholar
  7. 7.
    Sham ML, Zander T, Rohlmann A, Bergmann G (2005) Effects of the rib cage on thoracic spine flexibility. Biomed Eng 50(11):361–365CrossRefGoogle Scholar
  8. 8.
    Watkins R IV, Watkins R III, Williams L, Ahlbrand S, Garcia R, Karamanian A, Sharp L, Vo C, Hedman T (2005) Stability provided by the sternum and rib cage in the thoracic spine. Spine (Phila Pa 1976) 30(11):1283–1286CrossRefGoogle Scholar
  9. 9.
    Brasiliense LB, Lazaro BC, Reyes PM, Dogan S, Theodore N, Crawford NR (2011) Biomechanical contribution of the rib cage to thoracic stability. Spine (Phila Pa 1976) 36(26):E1686–E1693CrossRefGoogle Scholar
  10. 10.
    Mannen EM, Anderson JT, Arnold PM, Friis EA (2015) Mechanical contribution of the rib cage in the human cadaveric thoracic spine. Spine (Phila Pa 1976) 40(13):E760–E766CrossRefGoogle Scholar
  11. 11.
    Dalton ML, Connally SR, Sealy WC (1992) Julian’s reintroduction of Milton’s operation. Ann Thorac Surg 53(3):532–533CrossRefPubMedGoogle Scholar
  12. 12.
    Kalso E, Mennander S, Tasmuth T, Nilsson E (2001) Chronic post-sternotomy pain. Acta Anaesthesiol Scand 45(8):935–939CrossRefPubMedGoogle Scholar
  13. 13.
    Meyerson J, Thelin S, Gordh T, Karlsten R (2001) The incidence of chronic post-sternotomy pain after cardiac surgery—a prospective study. Acta Anaesthesiol Scand 45(8):940–944CrossRefPubMedGoogle Scholar
  14. 14.
    van Gulik L, Janssen LI, Ahlers SJ, Bruins P, Driessen AH, van Boven WJ, van Dongen EP, Knibbe CA (2011) Risk factors for chronic thoracic pain after cardiac surgery via sternotomy. Eur J Cardiothoraci Surg 40(6):1309–1313Google Scholar
  15. 15.
    McGregor WE, Trumble DR, Magovern JA (1999) Mechanical analysis of midline sternotomy wound closure. J Thorac Cardiovasc Surg 117(6):1144–1150CrossRefPubMedGoogle Scholar
  16. 16.
    Dasika UK, Trumble DR, Magovern JA (2003) Lower sternal reinforcement improves the stability of sternal closure. Ann Thorac Surg 75(5):1618–1621CrossRefPubMedGoogle Scholar
  17. 17.
    Losanoff JE, Collier AD, Wagner-Mann CC, Richman BW, Huff H, Hsieh FH, Diaz-Arias A, Jones JW (2004) Biomechanical comparison of median sternotomy closures. Ann Thorac Surg 77(1):203–209CrossRefPubMedGoogle Scholar
  18. 18.
    Huh J, Bakaeen F, Chu D, Wall MJ (2008) Transverse sternal plating in secondary sternal reconstruction. J Thorac Cardiovasc Surg 136(6):1476–1480CrossRefPubMedGoogle Scholar
  19. 19.
    Fawzy H, Alhodaib N, Mazer CD, Harrington A, Latter D, Bonneau D, Errett L, Mahoney J (2009) Sternal plating for primary and secondary sternal closure; can it improve sternal stability. J Cardiothorac Surg 4:19CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wilke HJ, Claes L, Schmitt H, Wolf S (1994) A universal spine tester for in vitro experiments with muscle force simulation. Eur Spine J 3(2):91–97CrossRefPubMedGoogle Scholar
  21. 21.
    Roussouly P, Gollogly S, Berthonnaud E, Dimnet J (2005) Classification of the normal variation in the sagittal alignment of the human lumbar spine and pelvis in the standing position. Spine (Phila Pa 1976) 30(11):1283–1286CrossRefGoogle Scholar
  22. 22.
    Wilke HJ, Jungkunz B, Wenger K, Claes LE (1998) Spinal segment range of motion as a function of in vitro test conditions: effects of exposure period, accumulated cycles, angular deformation rate, and moisture condition. Anat Rec 251:15–19CrossRefPubMedGoogle Scholar
  23. 23.
    Wilke HJ, Wenger K, Claes L (1998) Testing criteria for spinal implants: recommendations for the standardization of in vitro stability testing of spinal implants. Eur Spine J 7(2):148–154CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Nakagawa S (2004) A farewell to Bonferroni: the problems of low statistical power and publication bias. Behav Ecol 15(6):1044–1045CrossRefGoogle Scholar
  25. 25.
    Schimmer C, Reents W, Elert O (2006) Primary closure of median sternotomy: a survey of all German surgical heart centers and a review of the literature concerning sternal closure technique. Thorac Cardiovasc Surg 54(6):408–413CrossRefPubMedGoogle Scholar
  26. 26.
    Willems JM, Jull GA, Ng JF (1996) An in vivo study of the primary and coupled rotations of the thoracic spine. Clin Biomech 11(6):311–316CrossRefGoogle Scholar
  27. 27.
    Fujimori T, Iwasaki M, Nagamoto Y, Ishii T, Kashii M, Murase T, Sugiura T, Matsuo Y, Sugamoto K, Yoshikawa H (2012) Kinematics of the thoracic spine in trunk rotation: in vivo 3-dimensional analysis. Spine (Phila Pa 1976) 37(21):E1318–E1328CrossRefGoogle Scholar
  28. 28.
    Morita D, Yukawa Y, Nakashima H, Ito K, Yoshida G, Machino M, Kanbara S, Iwase T, Kato F (2014) Range of motion of thoracic spine in sagittal plane. Eur Spine J 23(3):673–678CrossRefPubMedGoogle Scholar
  29. 29.
    Adams MA, Dolan P, Hutton WC (1988) The lumbar spine in backward bending. Spine (Phila Pa 1976) 13(9):1019–1026CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Christian Liebsch
    • 1
  • Nicolas Graf
    • 1
  • Hans-Joachim Wilke
    • 1
  1. 1.Institute of Orthopaedic Research and Biomechanics, Trauma Research Centre (ztf)Ulm UniversityUlmGermany

Personalised recommendations