European Spine Journal

, Volume 26, Issue 5, pp 1454–1462 | Cite as

The radiologic assessment of posterior ligamentous complex injury in patients with thoracolumbar fracture

  • Jiao-Xiang Chen
  • Amit Goswami
  • Dao-Liang Xu
  • Jun Xuan
  • Hai-Ming Jin
  • Hong-Ming Xu
  • Feng Zhou
  • Yong-Li Wang
  • Xiang-Yang Wang
Original Article



To discuss whether radiologic parameters are closely related to posterior ligamentous complex (PLC) injury identified by magnetic resonance imaging (MRI).


One hundred and five thoracolumbar fracture (T11–L2) patients were retrospectively analyzed in the study. The patients were divided into different groups by the status of the PLC on MRI: intact, incompletely ruptured and ruptured. The radiographic parameters included the anterior edge-inferior endplate angle (AEIEA), the anterior edge displacement (AED), the Cobb angle (CA), the region angle (RA), the sagittal index (SI), local kyphosis (LK), the anterior/posterior vertebral height ratio (A/P ratio), the anterior vertebral height ratio (AVH ratio), and bony fragment in front of the fractured vertebra (BFOFV). T test, Pearson’s Chi-square and multivariate logistic regression were calculated for the variables.


Supraspinous ligament (SSL) rupture versus intact was not only associated with the occurrence of AEIEA <70°, LK >25° and BFOFV, but also with increased AED (9.89 ± 3.12 mm and 9.34 ± 3.36 mm, P = 0.034), RA (9.52 ± 3.93° versus 7.91 ± 3.99°, P = 0.042), and LK (23.98 ± 5.88° versus 15.55 ± 5.28°, P = 0.021). The indications for interspinous ligament (ISL) injury included AEIEA <75°, AEIEA <70° (P = 0.004 and P < 0.001, respectively), increased AED (P = 0.010), LK >25° (P = 0.024), AVH (P < 0.001), and BFOFV (P < 0.001). Multivariate logistic regression analysis revealed that AEIEA <70° and BFOFV were high risk factors for SSL rupture [standard partial regression coefficients (betas) were 0.439 and 0.408, P = 0.003 and 0.001, respectively] and ISL rupture (betas were 0.548 and 0.494, P = 0.028 and 0.001, respectively). Increased AED and LK >25° were also related to either ISL rupture (P = 0.035 and 0.001, respectively) or SSL rupture (P = 0.014 and 0.008, respectively).


Our data may prove useful in a preliminary assessment of the PLC integrity based on plain radiographic imaging. We show that radiologic indications, such as AEIEA <70°, BFOFV, LK >25°, and increased AED, are correlated with ISL or SSL rupture, while RA, CA, SI, A/P ratio, and AVH ratio are not.


Thoracolumbar fracture Posterior ligamentous complex Plain radiograph MRI 



This work is supported by Grant from National Nature Foundation of China (Grant No. 81371988), National Nature Foundation of China (Grant No. 30700843), and Natural Science Foundation of Zhejiang Province for Distinguished Young Scholars (Grant No. LR12H06001), and Major science and technology program for medical and health of Zhejiang Province (Grant No. WKJ-ZJ-1527).

Compliance with ethical standards

Conflict of interest

None of the authors has any potential conflict of interest.


  1. 1.
    Izzo R, Guarnieri G, Guglielmi G, Muto M (2013) Biomechanics of the spine. Part I: spinal stability. Eur J Radiol 82:118–126. doi: 10.1016/j.ejrad.2012.07.024 CrossRefPubMedGoogle Scholar
  2. 2.
    Vaccaro AR, Lee JY, Schweitzer KM Jr, Lim MR, Baron EM, Oner FC, Hulbert RJ, Hedlund R, Fehlings MG, Arnold P, Harrop J, Bono CM, Anderson PA, Anderson DG, Harris MB, Spine Trauma Study G (2006) Assessment of injury to the posterior ligamentous complex in thoracolumbar spine trauma. Spine J 6:524–528. doi: 10.1016/j.spinee.2006.01.017 CrossRefPubMedGoogle Scholar
  3. 3.
    Pizones J, Zuniga L, Sanchez-Mariscal F, Alvarez P, Gomez-Rice A, Izquierdo E (2012) MRI study of post-traumatic incompetence of posterior ligamentous complex: importance of the supraspinous ligament. Prospective study of 74 traumatic fractures. Eur Spine J 21:2222–2231. doi: 10.1007/s00586-012-2403-z CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    James KS, Wenger KH, Schlegel JD, Dunn HK (1994) Biomechanical evaluation of the stability of thoracolumbar burst fractures. Spine 19:1731–1740CrossRefPubMedGoogle Scholar
  5. 5.
    Gillespie KA, Dickey JP (2004) Biomechanical role of lumbar spine ligaments in flexion and extension: determination using a parallel linkage robot and a porcine model. Spine 29:1208–1216CrossRefPubMedGoogle Scholar
  6. 6.
    Alapan Y, Demir C, Kaner T, Guclu R, Inceoglu S (2013) Instantaneous center of rotation behavior of the lumbar spine with ligament failure. J Neurosurg Spine 18:617–626. doi: 10.3171/2013.3.SPINE12923 CrossRefPubMedGoogle Scholar
  7. 7.
    Holdsworth F (1970) Fractures, dislocations, and fracture-dislocations of the spine. J Bone Joint Surg Am 52:1534–1551CrossRefPubMedGoogle Scholar
  8. 8.
    Magerl F, Aebi M, Gertzbein SD, Harms J, Nazarian S (1994) A comprehensive classification of thoracic and lumbar injuries. Eur Spine J 3:184–201CrossRefPubMedGoogle Scholar
  9. 9.
    Vaccaro AR, Oner C, Kepler CK, Dvorak M, Schnake K, Bellabarba C, Reinhold M, Aarabi B, Kandziora F, Chapman J, Shanmuganathan R, Fehlings M, Vialle L, Injury AOSC, Trauma Knowledge F (2013) AOSpine thoracolumbar spine injury classification system: fracture description, neurological status, and key modifiers. Spine 38:2028–2037. doi: 10.1097/BRS.0b013e3182a8a381 CrossRefPubMedGoogle Scholar
  10. 10.
    Vaccaro AR, Lehman RA Jr, Hurlbert RJ, Anderson PA, Harris M, Hedlund R, Harrop J, Dvorak M, Wood K, Fehlings MG, Fisher C, Zeiller SC, Anderson DG, Bono CM, Stock GH, Brown AK, Kuklo T, Oner FC (2005) A new classification of thoracolumbar injuries: the importance of injury morphology, the integrity of the posterior ligamentous complex, and neurologic status. Spine 30:2325–2333CrossRefPubMedGoogle Scholar
  11. 11.
    Gamanagatti S, Rathinam D, Rangarajan K, Kumar A, Farooque K, Sharma V (2015) Imaging evaluation of traumatic thoracolumbar spine injuries: radiological review. World J Radiol 7:253–265. doi: 10.4329/wjr.v7.i9.253 PubMedPubMedCentralGoogle Scholar
  12. 12.
    Savage JW, Moore TA, Arnold PM, Thakur N, Hsu WK, Patel AA, McCarthy K, Schroeder GD, Vaccaro AR, Dimar JR, Anderson PA (2015) The reliability and validity of the thoracolumbar injury classification system in pediatric spine trauma. Spine 40:E1014–E1018. doi: 10.1097/BRS.0000000000001011 CrossRefPubMedGoogle Scholar
  13. 13.
    Park HJ, Lee SY, Park NH, Shin HG, Chung EC, Rho MH, Kim MS, Kwon HJ (2016) Modified thoracolumbar injury classification and severity score (TLICS) and its clinical usefulness. Acta Radiol 57:74–81. doi: 10.1177/0284185115580487 CrossRefPubMedGoogle Scholar
  14. 14.
    Pizones J, Sanchez-Mariscal F, Zuniga L, Alvarez P, Izquierdo E (2013) Prospective analysis of magnetic resonance imaging accuracy in diagnosing traumatic injuries of the posterior ligamentous complex of the thoracolumbar spine. Spine 38:745–751. doi: 10.1097/BRS.0b013e31827934e4 CrossRefPubMedGoogle Scholar
  15. 15.
    Hiyama A, Watanabe M, Katoh H, Sato M, Nagai T, Mochida J (2014) Relationships between posterior ligamentous complex injury and radiographic parameters in patients with thoracolumbar burst fractures. Injury. doi: 10.1016/j.injury.2014.10.047 PubMedGoogle Scholar
  16. 16.
    Dai LY, Ding WG, Wang XY, Jiang LS, Jiang SD, Xu HZ (2009) Assessment of ligamentous injury in patients with thoracolumbar burst fractures using MRI. J Trauma 66:1610–1615. doi: 10.1097/TA.0b013e3181848206 CrossRefPubMedGoogle Scholar
  17. 17.
    McCormack T, Karaikovic E, Gaines RW (1994) The load sharing classification of spine fractures. Spine 19:1741–1744CrossRefPubMedGoogle Scholar
  18. 18.
    Chen J, Jia YS, Sun Q, Li JY, Zheng CY, Du J, Bai CX (2015) Multivariate analysis of risk factors for predicting supplementary posterior instrumentation after anterolateral decompression and instrumentation in treating thoracolumbar burst fractures. J Orthopaedic Surg Res 10:17. doi: 10.1186/s13018-015-0155-2 CrossRefGoogle Scholar
  19. 19.
    Lee JY, Vaccaro AR, Schweitzer KM Jr, Lim MR, Baron EM, Rampersaud R, Oner FC, Hulbert RJ, Hedlund R, Fehlings MG, Arnold P, Harrop J, Bono CM, Anderson PA, Patel A, Anderson DG, Harris MB (2007) Assessment of injury to the thoracolumbar posterior ligamentous complex in the setting of normal-appearing plain radiography. Spine J 7:422–427. doi: 10.1016/j.spinee.2006.07.014 CrossRefPubMedGoogle Scholar
  20. 20.
    Lee HM, Kim HS, Kim DJ, Suk KS, Park JO, Kim NH (2000) Reliability of magnetic resonance imaging in detecting posterior ligament complex injury in thoracolumbar spinal fractures. Spine 25:2079–2084CrossRefPubMedGoogle Scholar
  21. 21.
    Haba H, Taneichi H, Kotani Y, Terae S, Abe S, Yoshikawa H, Abumi K, Minami A, Kaneda K (2003) Diagnostic accuracy of magnetic resonance imaging for detecting posterior ligamentous complex injury associated with thoracic and lumbar fractures. J Neurosurg 99:20–26PubMedGoogle Scholar
  22. 22.
    Crosby CG, Even JL, Song Y, Block JJ, Devin CJ (2011) Diagnostic abilities of magnetic resonance imaging in traumatic injury to the posterior ligamentous complex: the effect of years in training. Spine J 11:747–753. doi: 10.1016/j.spinee.2011.07.005 CrossRefPubMedGoogle Scholar
  23. 23.
    van Middendorp JJ, Patel AA, Schuetz M, Joaquim AF (2013) The precision, accuracy and validity of detecting posterior ligamentous complex injuries of the thoracic and lumbar spine: a critical appraisal of the literature. Eur Spine J 22:461–474. doi: 10.1007/s00586-012-2602-7 CrossRefPubMedGoogle Scholar
  24. 24.
    Barcelos AC, Joaquim AF, Botelho RV (2016) Reliability of the evaluation of posterior ligamentous complex injury in thoracolumbar spine trauma with the use of computed tomography scan. Eur Spine J 25:1135–1143. doi: 10.1007/s00586-016-4377-8 CrossRefPubMedGoogle Scholar
  25. 25.
    Radcliff K, Su BW, Kepler CK, Rubin T, Shimer AL, Rihn JA, Harrop JA, Albert TJ, Vaccaro AR (2012) Correlation of posterior ligamentous complex injury and neurological injury to loss of vertebral body height, kyphosis, and canal compromise. Spine 37:1142–1150. doi: 10.1097/BRS.0b013e318240fcd3 CrossRefPubMedGoogle Scholar
  26. 26.
    Petersilge CA, Pathria MN, Emery SE, Masaryk TJ (1995) Thoracolumbar burst fractures: evaluation with MR imaging. Radiology 194:49–54. doi: 10.1148/radiology.194.1.7997581 CrossRefPubMedGoogle Scholar
  27. 27.
    Farcy JP, Weidenbaum M, Glassman SD (1990) Sagittal index in management of thoracolumbar burst fractures. Spine 15:958–965CrossRefPubMedGoogle Scholar
  28. 28.
    Nagel DA, Koogle TA, Piziali RL, Perkash I (1981) Stability of the upper lumbar spine following progressive disruptions and the application of individual internal and external fixation devices. J Bone Joint Surg Am 63:62–70CrossRefPubMedGoogle Scholar
  29. 29.
    Cantor JB, Lebwohl NH, Garvey T, Eismont FJ (1993) Nonoperative management of stable thoracolumbar burst fractures with early ambulation and bracing. Spine 18:971–976CrossRefPubMedGoogle Scholar
  30. 30.
    Rechtine GR (1999) Nonsurgical treatment of thoracic and lumbar fractures. Instr Course Lect 48:413–416PubMedGoogle Scholar
  31. 31.
    Heuer F, Schmidt H, Klezl Z, Claes L, Wilke HJ (2007) Stepwise reduction of functional spinal structures increase range of motion and change lordosis angle. J Biomech 40:271–280. doi: 10.1016/j.jbiomech.2006.01.007 CrossRefPubMedGoogle Scholar
  32. 32.
    Daffner RH, Deeb ZL, Goldberg AL, Kandabarow A, Rothfus WE (1990) The radiologic assessment of post-traumatic vertebral stability. Skeletal Radiol 19:103–108PubMedGoogle Scholar
  33. 33.
    Panjabi MM, Hausfeld JN, White AA 3rd (1981) A biomechanical study of the ligamentous stability of the thoracic spine in man. Acta Orthop Scand 52:315–326CrossRefPubMedGoogle Scholar
  34. 34.
    McAfee PC, Yuan HA, Fredrickson BE, Lubicky JP (1983) The value of computed tomography in thoracolumbar fractures. An analysis of one hundred consecutive cases and a new classification. J Bone Joint Surg Am 65:461–473CrossRefPubMedGoogle Scholar
  35. 35.
    Keynan O, Fisher CG, Vaccaro A, Fehlings MG, Oner FC, Dietz J, Kwon B, Rampersaud R, Bono C, France J, Dvorak M (2006) Radiographic measurement parameters in thoracolumbar fractures: a systematic review and consensus statement of the spine trauma study group. Spine 31:E156–E165. doi: 10.1097/01.brs.0000201261.94907.0d CrossRefPubMedGoogle Scholar
  36. 36.
    Pizones J, Izquierdo E, Sanchez-Mariscal F, Zuniga L, Alvarez P, Gomez-Rice A (2012) Sequential damage assessment of the different components of the posterior ligamentous complex after magnetic resonance imaging interpretation: prospective study 74 traumatic fractures. Spine 37:E662–E667. doi: 10.1097/BRS.0b013e3182422b2b CrossRefPubMedGoogle Scholar
  37. 37.
    Vaccaro AR, Rihn JA, Saravanja D, Anderson DG, Hilibrand AS, Albert TJ, Fehlings MG, Morrison W, Flanders AE, France JC, Arnold P, Anderson PA, Friel B, Malfair D, Street J, Kwon B, Paquette S, Boyd M, Dvorak MF, Fisher C (2009) Injury of the posterior ligamentous complex of the thoracolumbar spine: a prospective evaluation of the diagnostic accuracy of magnetic resonance imaging. Spine 34:E841–E847. doi: 10.1097/BRS.0b013e3181bd11be CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Jiao-Xiang Chen
    • 1
  • Amit Goswami
    • 1
  • Dao-Liang Xu
    • 1
  • Jun Xuan
    • 1
  • Hai-Ming Jin
    • 1
  • Hong-Ming Xu
    • 1
  • Feng Zhou
    • 1
  • Yong-Li Wang
    • 1
  • Xiang-Yang Wang
    • 1
  1. 1.Department of Orthopaedic SurgeryThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhouChina

Personalised recommendations