Skip to main content

Advertisement

Log in

Transplanted xenogenic bone marrow stem cells survive and generate new bone formation in the posterolateral lumbar spine of non-immunosuppressed rabbits

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Bone marrow stem cells (BMSCs) are pluripotent cells that have been used to facilitate bone repair because of their capability of differentiating into osteoblasts. However, it is well known that the number of BMSCs with osteogenic potential decreases in patients with old age, osteoporosis, and metabolic diseases. In such conditions, xenogenic BMSCs may provide an alternative to autologous BMSCs. In the current study, we investigated the potential of transplanted xenogenic BMSCs to survive and generate new bone formation in the posterolateral lumbar spine of non-immunosuppressed rabbits. The BMSCs were obtained from bilateral femurs of four male rats, cultured and expanded in medium with osteoinduction supplement. The BMSCs (1,000,000 cells) of male rats loaded onto 5 cc compression resistant matrix (CRM; Medtronic Sofamor Danek, USA) were implanted bilaterally onto the L4-5 intertransverse processes of 16 female rabbits (xenogenic BMSCs + CRM group). The 16 female rabbits that received 5 cc CRM alone were used as controls (CRM alone group). To exclude the possibility of migration of BMSCs from the transverse processes of the recipient rabbits, we did not decorticate the transverse processes. No rabbits received any immunosuppressive medications during the experiment. Four rabbits each in both of the experimental and control groups were killed at 1, 2, 4, and 6 months postimplantation, and the lumbar spine underwent radiological and histological analyses for evaluation of new bone formation. The polymerase chain reaction (PCR) for Sry gene (Y-chromosome-specific marker) was used to evaluate the survival of transplanted xenogenic BMSCs. The expression of Sry gene was clearly identified in the lumbar spines of all the 16 rabbits in the xenogenic BMSCs + CRM group at 1–6 months postimplantation. Serial plain radiographs showed gradual resorption of CRM; however, it was difficult to clearly identify the presence of new bone formation due to the radiopacity of the remaining CRM. Histologically, mature lamellar and woven bone with osteoblasts and osteocytes were identified in all eight rabbits in the xenogenic BMSCs + CRM group at 4 and 6 months postimplantation, but in none of the eight rabbits at 1 and 2 months postimplantation. None of CRM alone group showed new bone formation at 1–6 months postimplantation. Mild-to-moderate infiltration of inflammatory cells was identified around the CRM carriers in both the groups. No post-operative wound infection was found in either group. Our results indicate that xenogenic BMSCs loaded onto CRM survive and generate new bone formation when placed into the posterolateral lumbar spine of rabbits without immunosuppression. To determine if a solid fusion can be achieved with such techniques, further studies are needed to investigate the appropriate dose of xenogenic BMSCs, amounts of CRM, and the requisite incubation time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akamaru T, Duh D, Boden SD, Kim HS, Minamide A, Louis-Ugbo J (2003) Simple carrier matrix modification can enhance delivery of recombinant huma bone morphogenic protein-2 for posterolateral spine fusion. Spine 28:429–434. doi:10.1097/00007632-200303010-00004

    Article  PubMed  Google Scholar 

  2. Arinzeh TL, Peter SJ, Archambault MP, van de Bos C, Gordon S, Kraus K et al (2003) Allogenic mesenchymal stem cells regenerate bone in a critical-sized canine segmental defect. J Bone Joint Surg Am 85:1927–1935

    PubMed  Google Scholar 

  3. Bartholomew A, Sturgeon C, Siatkas M, Ferrer K, McIntosh K, Patil S et al (2002) Mesenchymal stem cells suppress lymphocu\yte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 30:42–48. doi:10.1016/S0301-472X(01)00769-X

    Article  PubMed  Google Scholar 

  4. Beresford JN (1989) Osteogenic stem cells and the stromal system of bone and marrow. Clin Orthop Relat Res 240:270–280

    PubMed  Google Scholar 

  5. Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294. doi:10.1002/(SICI)1097-4644(199702)64:2<278::AID-JCB11>3.0.CO;2-F

    Article  PubMed  CAS  Google Scholar 

  6. Bruder SP, Kraus KH, Goldberg VM, Kadiyala S (1998) The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg Am 80:985–996

    PubMed  CAS  Google Scholar 

  7. Ettinger M (2003) Aging bone and osteoporosis. Strategies for preventing fractures in the elderly. Arch Intern Med 163:2237–2246. doi:10.1001/archinte.163.18.2237

    Article  PubMed  Google Scholar 

  8. Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20:263–272

    PubMed  CAS  Google Scholar 

  9. Grinnemo KH, Mansson A, Dellgren G, Klinberg D, Wardell E, Drvota V et al (2004) Xenoreativity and engraftment of human mesenchymal stem cells transplantation into infracted rat myocardium. J Thorac Cardiovasc Surg 27:1293–1300. doi:10.1016/j.jtcvs.2003.07.037

    Article  Google Scholar 

  10. Heersche JN, Bellows CG, Ishida Y (1998) The decerase in bone mass associated with aging and menopause. J Prosthet Dent 79:14–16. doi:10.1016/S0022-3913(98)70187-8

    Article  PubMed  CAS  Google Scholar 

  11. Heise U, Osborn JF, Duwe F (1990) Hydroxyapatite ceramic as a bone substitute. Int Orthop 14:329–338. doi:10.1007/BF00178768

    Article  PubMed  CAS  Google Scholar 

  12. Hirasawa A, Tsujimoto G, Okuyama S, Li XK, Iwaya M, Masaki Y et al (1995) Polymerase chain reaction of the rat sex-determining region of the Y-chromosome and its application to estimate a state of sensitization to minor histocompatability antigen H-Y. Transplant Proc 27:1598–1600

    PubMed  CAS  Google Scholar 

  13. Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified, culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64:295–312. doi:10.1002/(SICI)1097-4644(199702)64:2<295::AID-JCB12>3.0.CO;2-I

    Article  PubMed  CAS  Google Scholar 

  14. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringdén O (2003) Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 57:11–20. doi:10.1046/j.1365-3083.2003.01176.x

    Article  PubMed  CAS  Google Scholar 

  15. Le Heuc JC, Lesprit E, Delavigne C, Clement D, Chauveaux D, Le Rebeller A (1997) Tri-calcium pjosphate ceramics and allografts as bone substitutes for spinal fusion in idiopathic scoliosis: comparative clinical results at four years. Acta Orthop Belg 63:202–211

    Google Scholar 

  16. Lennon DP, Haynesworth SE, Bruder SP, Jaiswal NJ, Caplan AI (1996) Human and animal mesenchymal progenitor cells from bone marrow: identification of serum for optimal selection and proliferation. In Vitro Cell Dev Biol 32:602–611. doi:10.1007/BF02724045

    Article  Google Scholar 

  17. Lieberman JR, Daluiski A, Stevenson S, Wu L, McAlister P, Lee YP et al (1999) The effect of regional gene therapy with bone morphogenic protein-2-producing bone-marrow cells on the repair of segmental femoral defects in rats. J Bone Joint Surg Am 81:905–917

    PubMed  CAS  Google Scholar 

  18. Lou J, Xu F, Merkle K, Manske P (1999) Gene therapy: adenovirus-mediated human bone morphogenic protein-2 gene transfer induces mesenchymal progenitor cell proliferation and differentiation in vitro and bone formation in vivo. J Orthop Res 17:43–50. doi:10.1002/jor.1100170108

    Article  PubMed  CAS  Google Scholar 

  19. MacDonald DJ, Luo J, Saito T, Duong M, Bernier PL, Chiu RC et al (2005) Persistence of marrow stromal cells implanted into acutely infarcted myocardium: observations in a xenotransplant model. J Thorac Cardiovasc Surg 130:1114–1121. doi:10.1016/j.jtcvs.2005.04.033

    Article  PubMed  Google Scholar 

  20. Muramatsu K, Valenzuela RG, Bishop AT (2003) Detection of chimerism following vascularized bone allotransplantation by polymerase chain reaction using a Y-chromosome specific primer. J Orthop Res 21:1056–1062. doi:10.1016/S0736-0266(03)00108-6

    Article  PubMed  CAS  Google Scholar 

  21. Passuti N, Daculsi G, Rogez JM, Martin S, Bainvel JV (1989) Macroporous calcium phosphate ceramic performance in human spine fusion. Clin Orthop Relat Res 248:169–176

    PubMed  Google Scholar 

  22. Patri S, Dascalescu C, Chomel JC, Sadoun A, Lacotte L, Tanzer J et al (1996) Monitoring and prognosctic evaluation of sex-mismatched bone marrow transplantation by competitive PCR on Y-chromosome sequences. Bone Marrow Transplant 17:625–632

    PubMed  CAS  Google Scholar 

  23. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al (1997) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147. doi:10.1126/science.284.5411.143

    Article  Google Scholar 

  24. Ringe J, Kaps C, Schmitt B, Büscher K, Bartel J, Smolian H et al (2002) Porcine mesenchymal stem cells. Induction of distinct mesenchymal cell lineages. Cell Tissue Res 307:321–327. doi:10.1007/s00441-002-0525-z

    Article  PubMed  CAS  Google Scholar 

  25. Rasmusson I (2006) Immune modulation by mesenchymal stem cells. Exp Cell Res 312:2169–2179. doi:10.1016/j.yexcr.2006.03.019

    Article  PubMed  CAS  Google Scholar 

  26. Riew KD, Wright NM, Cheng S-L, Avioli LV, Lou J (1998) Induction of bone formation using a recombinant adenoviral vector carrying the human BMP-2 gene in a rabbit spinal fusion model. Calcif Tissue Int 63:357–360. doi:10.1007/s002239900540

    Article  PubMed  CAS  Google Scholar 

  27. Russel JL, Block JE (2000) Surgical harvesting of bone graft from the ilium: point of view. Med Hypotheses 55:474–479. doi:10.1054/mehy.2000.1095

    Article  Google Scholar 

  28. Saito T, Kuang JQ, Bittira B, Al-Khaldi A, Chiu RC (2002) Xenotransplant cardiac chimera: immune tolerance of adult stem cells. Ann Thorac Surg 74:19–24. doi:10.1016/S0003-4975(02)03591-9

    Article  PubMed  Google Scholar 

  29. Tashiro H, Fukuda Y, Hoshino S, Furukawa M, Shintaku S, Dohi K (1995) Monitoring for engraftment following rat orthotopic liver transplantation by in vitro amplication of Y-chromosome gene using polymerase chain reaction. Cell Transplant 4:61–63. doi:10.1016/0963-6897(94)00060-W

    Article  Google Scholar 

  30. Wang Y, Chen X, Armstrong MA, Li G (2007) Survival of bone marrow-derived mesenchymal stem cells in a Xenotransplantation model. J Orthop Res 25:926–932. doi:10.1002/jor.20385

    Article  PubMed  CAS  Google Scholar 

  31. Wang L, Lu XF, Lu YR, Liu J, Gao K, Zeng YZ et al (2006) Immunogenicity and immune modulation of osteogenic differentiated mesenchymal stem cells from Banna Minipig Inbred Line. Transplant Proc 38:2267–2269. doi:10.1016/j.transproceed.2006.06.048

    Article  PubMed  CAS  Google Scholar 

  32. Wilborn F, Schmidt CA, Siegert W (1993) Demonstration of chimerism after allogenic bone marrow transplantation by polymerase chain reaction of Y-chromosome-specific nucleotide sequences—characterization of a technical approach. Leukemia 7:140–143

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was supported by year 2006 research fundings of Catholic Institute of Cell Therapy, The Catholic University of Korea School of Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jong-Beom Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, HJ., Park, JB., Lee, J.K. et al. Transplanted xenogenic bone marrow stem cells survive and generate new bone formation in the posterolateral lumbar spine of non-immunosuppressed rabbits. Eur Spine J 17, 1515–1521 (2008). https://doi.org/10.1007/s00586-008-0784-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-008-0784-9

Keywords

Navigation