Skip to main content

Advertisement

Log in

Cervical anterior transpedicular screw fixation (ATPS)—Part II. Accuracy of manual insertion and pull-out strength of ATPS

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Reconstruction after multilevel decompression of the cervical spine, especially in the weakened osteoporotic, neoplastic or infectious spine often requires circumferential stabilization and fusion. To avoid the additional posterior surgery in these cases while increasing rigidity of anterior-only screw-plate constructs, the authors introduce the concept of anterior transpedicular screw (ATPS) fixation. We demonstrated its morphological feasibility as well as its indications in a previous study in Part I of our project. Consequently, the objectives of the current study were to assess the ex vivo accuracy of placing ATPS into the cervical vertebra as well as the biomechanical performance of ATPS in comparison to traditional vertebral body screws (VBS) in terms of pull-out strength (POS). Twenty-three ATPS were inserted alternately to two screws into the pedicles and vertebral bodies, respectively, of six cadaveric specimens from C3–T1. For insertion of ATPS, a manual fluoroscopically assisted technique was used. Pre- and post insertional CT-scans were used to assess accuracy of ATPS insertion in the axial and sagittal planes. A newly designed grading system and accuracy score were used to delineate accuracy of ATPS insertion. Following insertion of screws, 23 ATPS and 22 VBS were subjected to pull-out testing (POT). The bone mineral density (BMD) of each specimen was assessed prior to POT. Statistical analysis showed that the incidence of correctly placed screws and non-critical pedicles breaches in axial plane was 78.3%, and 95.7% in sagittal plane. Hence, according to our definition of “critical” pedicle breach that exposes neurovascular structures at risk, 21.7% (n = 5) of all ATPS inserted showed a critical pedicle breach in axial plane. Notably, no critical pedicle perforation occurred at the C6 to T1 levels. Pull-out testing of ATPS and VBS revealed that pull-out resistance of ATPS was 2.5-fold that of VBS. Mean POS of 23 ATPS with a mean BMD of 0.566 g/cm2 and a mean osseus screw purchase of 27.2 mm was 467.8 N. In comparison, POS of 22 VBS screws with a mean BMD of 0.533 g/cm2 and a mean osseus screw purchase of 16.0 mm was 181.6 N. The difference in ultimate pull-out strength between the ATPS and VBS group was significant (p < 0.000001). Also, accuracy of ATPS placement in axial plane was shown to be significantly correlated with POS. In contrast, there was no correlation between screw-length, BMD, or level of insertion and the POS of ATPS or VBS. The study demonstrated that the use of ATPS might be a new technique worthy of further investigation. The use of ATPS shows the potential to increase construct rigidity in terms of screw-plate pull-out resistance. It might diminish construct failures during anterior-only reconstructions of the highly unstable decompressed cervical spine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abumi K, Shono Y, Ito M, Taneichi H, Kotani Y, Kaneda K (2000) Complications of pedicle screw fixation in reconstructive surgery of the cervical spine. Spine 25(8):962–969

    Article  PubMed  CAS  Google Scholar 

  2. Kotani Y, Abumi K, Ito M, Minami A (2005) Cervical spine injuries associated with lateral mass and facet joint fractures: new classification and surgical treatment with pedicle fixation. Eur Spine J 14:69–77

    Article  PubMed  Google Scholar 

  3. Holly LT, Foley KT (2006) Percutaneous placement of posterior cervical screws using three-dimensional fluoroscopy. Spine 31:536–540

    Article  PubMed  Google Scholar 

  4. Jeanneret B, Gebhard JS, Magerl F (1994) Transpedicular screw fixation of articular mass fracture-separation: results of an anatomical study and operative technique. Spine 19:2529–2539

    Article  Google Scholar 

  5. Kamimura M, Ebara S, Itoh H, Tateiwa Y, Kinoshita T, Takaoka K (2003) Cervical pedicle screw insertion: assessment of safety and accuracy with computer-assisted image guidance. J Spinal Disord 13:218–224

    Article  Google Scholar 

  6. Karaikovic EE, Yingsakmongkol W, Gaines RW (2001) Accuracy of cervical pedicle screw placement using the funnel technique. Spine 26:2456–2462

    Article  PubMed  CAS  Google Scholar 

  7. Ludwig SC, Kowalski JM, Edwards CC 2nd, Heller JG (2000) Cervical pedicle screws: comparative accuracy of two insertion techniques. Spine 25:2675–2681

    Article  PubMed  CAS  Google Scholar 

  8. Ludwig SC, Kramer DL, Balderston RA, Vaccaro AR, Foley KF, Albert TJ (2000) Placement of pedicle screws in the human cadaveric cervical spine: comparative accuracy of three techniques. Spine 25:1655–1667

    Article  PubMed  CAS  Google Scholar 

  9. Mao GP, Zhao JN, Wang YR, Li JS, chen YX, Wu SJ, Bao NR (2005) Design of cervical pedicle locator and three-dimensional location of cervical pedicle. Spine 30:1045–1050

    Article  PubMed  Google Scholar 

  10. Miller RM, Ebraheim NA, Xu R, Yeasting RA (1996) Anatomic consideration of transpedicular screw placement in the cervical spine: an analysis of two approaches. Spine 21:2317–2322

    Article  PubMed  CAS  Google Scholar 

  11. Reinhold M, Magerl F, Rieger M, Blauth M (2006) Cervical pedicle screw placement: feasibility and accuracy of two new insertion techniques based on morphometric data. Eur Spine J 16:47–56

    Article  PubMed  Google Scholar 

  12. Richter M, Amiot LP, Puhl W (2002) Computer-assisted surgery in dorsal instrumentation of the cervical spine: an in vitro study. Orthopäde 31:372–377

    Article  PubMed  CAS  Google Scholar 

  13. Roh JS, Teng AL, Rice JA, Huang RC, Davis JA (2004) Accurate cervical pedicle screw placement using laser-guided fluoroscopy: the ‘perfect pedicle’ technique. 32nd annual meeting. Boston: Cervical Spine Research Society—A, Poster 16:69

  14. Ito H, Neo M, Yoshida M, Fujibayashi S, Yoshitomi H, Nakamura T (2006) Efficacy of computer-assisted pedicle screw insertion for cervical instability in RA patients. Rheumatol Int 27:567–574

    Article  PubMed  Google Scholar 

  15. Kast E, Mohr K, Richter H-P, Börm W (2006) Complications of transpedicular screw fixation in the cervical spine. Eur Spine J 15:327–334

    Article  PubMed  CAS  Google Scholar 

  16. Kotani Y, Abumi K, Ito M, Minami A (2003) Improved accuracy of computer-asisted cervical pedicle screw insertion. J Neurosurg 99(Spine 3):257–263

    PubMed  Google Scholar 

  17. Neo M, Sakamoto T, Fujibayashi S, Nakamura T (2005) The clinical risk of vertebral artery injury from cervical pedicle screws in degenerative vertebrae. Spine 30:2800–2805

    Article  PubMed  Google Scholar 

  18. Takahashi J, Shono Z, Nakamura I, Hirabayashi H, Kamimura M, Ebara S, Kato H (2006) Computer-assisted screw insertion of cervical disorders in rheumatoid arthritis. Eur Spine J 16:485–494

    Article  PubMed  CAS  Google Scholar 

  19. Yoshimoto H, Sato S, Hyakumachi T, Yanagibashi Y, Masuda T (2005) Spinal reconstruction using a cervical pedicle screw system. Clin Orthop Rel Res 431:111–119

    Google Scholar 

  20. Yukawa Y, Kato F, Yoshirara H, Yanase M, Ito K (2006) Cervical pedicle screw fixation in 100 cases of unstable cervical injuries: pedicle axis views obtained using fluoroscopy. J Neurosurg 5:488–493

    Google Scholar 

  21. Koller H, Acosta F, Hempfing A, Scheiter A, Tauber A, Holz U, Resch H, Fox M, Hitzl M (2008). Cervical anterior transpedicular screw fixation. Part I: Study on morphological feasibility, indications, and technical prerequisites. Eur Spine J (in press) [E-pub ahead of print]

  22. Hirano T, Hasegawa K,Takahashi H, Uchiyama S, Hara T, Washio T, Sugiura T, Yokaichiya M, Ideka M (1997) Structural characteristics of the pedicle and its role in screw stability. Spine 22:2504–2510

    Article  PubMed  CAS  Google Scholar 

  23. Weinstein JN, Rydevik BL, Rauschnig WR (1992) Anatomical and technical considerations of pedicle screw fixation. Clin Orthop 284:34–36

    PubMed  Google Scholar 

  24. Johnston LT, Karaikovic EE, Lautenschlager EP, Marcu D (2006) Cervical pedicle screws vs. lateral mass screws: uniplanar fatigue analysis and residual pullout strengths. Spine J 6:667–672

    Article  PubMed  Google Scholar 

  25. Jones EL, Heller JG, Silcox DH, Hutton WC (1997) Cervical pedicle screws versus lateral mass screws: anatomic feasibility and biomechanical comparison. Spine 22:977–982

    Article  PubMed  CAS  Google Scholar 

  26. Kotani Y, Cunningham BW, Abumi K, McAfee PC (1994) Biomechanical analysis of cervical stabilization systems. An assessment of transpedicular screw fixation in the cervical spine. Spine 19:2529–2539

    Article  PubMed  CAS  Google Scholar 

  27. Kothe R, Rüter W, Schneider E, Linke B (2004) Biomechanical analysis of transpedicular screw fixation in the subaxial cervical spine. Spine 29:1869–1875

    Article  PubMed  Google Scholar 

  28. KowalskiJ, Ludwig SC, Hutton WC, Heller JG (2000) Cervical spine pedicle screws: a biomechanical comparison of two insertion techniques. Spine 25:2865–2867

    Article  Google Scholar 

  29. Krikpatrick JS, Levy JA, Carillo J, Moeini SR (1999) Reconstruction after multilevel corporectomy in the cervical spine. A sagittal plane biomechanical study. Spine 24:1186–1191; Discussion: Traynelis VC: 1191

    Article  Google Scholar 

  30. Bozkus H, Ames CP, Chamberlain RH, Nottmeier EW, Sonntag VKH, Papadopoulos SM, Crawford NR (2005) Biomechanical analysis of rigid stabilization techniques for three-column injury in the lower cervical spine. Spine 30:915–922

    Article  PubMed  Google Scholar 

  31. Do Koh Y, Lim TH, Won You J, Eck J, An HS (2001) A biomechanical comparison of modern anterior and posterior plate fixation of the cervical spine. Spine 26:15–21

    Article  PubMed  CAS  Google Scholar 

  32. Isomi T, Panjabi MM, Wang JL, Vaccaro AR, Garfin SR, Patel T (1999) Stabilizing potential of anterior cervical plates in multilevel corpectomies. Spine 24:2219–2223

    Article  PubMed  CAS  Google Scholar 

  33. Isomi T Panjabi MM, Wang JL, et al (1999) Stabilizing potential of anterior cervical plates in multilevel corporectomies. Spine 24:2219–2223

    Article  Google Scholar 

  34. Kim S-M, Lim TJ, Paterno J, Park BSJ, Kim DH (2004) A biomechanical comparison of three surgical approaches in bilateral cervical facet dislocation. J Neurosurg 1(Spine 1):108–115

    Google Scholar 

  35. Mummaneni PV, Haid RW, Traynelis VC, Sasso RC, Subach BR, Fiore AJ, Rodts GE (2002) Posterior cervical fixation using a new polyaxial screw and rod system: technique and surgical results. Neurosurg Focus 12:Article 8

  36. Panjabi MM, Isomi T, Wang JL (1999) Loosening at the screw-vertebra junction in multilevel anterior cervical plate constructs. Spine 24:2383–2388

    Article  PubMed  CAS  Google Scholar 

  37. Sasso RC, Ruggiero RA Jr, Reilly TM, Hall PV (2003) Early reconstruction failures after multilevel cervical corpectomy. Spine 28:140–142

    Article  PubMed  Google Scholar 

  38. Schmidt R, Wilke HJ, Claes L, Puhl W, Richter M (2005) Effect of constrained posterior screw and rod systems for primary stability: biomechanical in vitro comparison of various instrumentations in a single-level corporectomy model. Eur Spine J 14:372–380

    Article  PubMed  Google Scholar 

  39. Schmidt R, Wilke HJ, Claes L, Puhl W, Richter M (2003) Pedicle screws enhance primary stability in multilevel cervical corporectomies: biomechanical in vitro comparison of different implants including constrained and nonconstrained posterior instruments. Spine 16:1821–1828

    Article  Google Scholar 

  40. Schulz KD Jr, McLaughlin MR, Haud RW Jr, et al (2000) Single-stage anterior-posterior decompression and stabilization for complex cervical spine disorders. J Neursurg 93(Spine 2):214–221

    Google Scholar 

  41. Singh K, Vaccaro AR, Kim J, Lorenz EP, Lim TH, An HS (2003) Biomechanical comparison of cervical spine reconstructive techniques after a multilevel corporectomy of the cervical spine. Spine 28:2352–2357

    Article  PubMed  Google Scholar 

  42. Ito Y, Kai N, Haesgawa Y, Nakago K, Toda K, Yagata Y, Shibara M (2005) Cervical or thoracic instrumentation surgery with registration-free 3D-navigation. Eur Spine J 14(Suppl 1):Abstract

  43. Taneichi H, Suda K, Kajino T, Kaneda K (2005) Traumatically induced vertebral artery occlusion associated with cervical spine injuries: prospective study using magnetic resonance angiography. Spine 30:1955–1962

    Article  PubMed  Google Scholar 

  44. Ludwig SC (2004) Complications of cervical spine pedicle screw placement. In: Clark CR (ed). The cervical spine, 4th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  45. Zhang QH, Tan SH, Chou SM (2004) Investigation of fixation screw pull-out strength on human spine. J Biomech 37:479–485

    Article  PubMed  CAS  Google Scholar 

  46. Liu J, Shafiq Q, Ebrahim NA, Karkare N, Asaad M, Woldenberg L, Yeasting RA (2005) Value of intraoperative true latera lradiograph of C2 pedicle for C1-2 transarticular screw insertion. Spine J 5:434–440

    Article  PubMed  Google Scholar 

  47. Richter M (2005) Posterior instrumentation of the cervical spine using the Neon Occipito-Cervical System. Part 2: cervical and cervicothoracic instrumentation. Oper Orthop Traumatol 6:579–600

    Article  Google Scholar 

  48. Oda I, Abumi K, Ito M, Kotani Y, Oya T, Hasegawa K, Minami A (2006) Palliative spinal reconstruction using cervical pedicle screws for metastatic lesions of the spine. A retrospective analysis of 32 cases. Spine 31:1439–1444

    Article  PubMed  Google Scholar 

  49. Koller H Kammermeier V, Ulbricht D, Assuncao A, Karolus S, v-d Berg B, Holz U (2006) Anterior retropharyngeal fixation C1-2 for stabilization of atlantoaxial instabilities. Study of feasibility, technical description and preliminary results. Eur Spine J 15:1326–1338

    Article  Google Scholar 

  50. Kosmopoulos V, Schizas C (2007) Pedicle screw placement accuracy. Spine 32:E111–E120

    Article  PubMed  Google Scholar 

  51. Kim HK, Heller JG, Hudgins PA, Fountain JA (2003) The accuracy of computed tomography in assessing pedicle screw placement. Spine 28:2441–2446

    Article  PubMed  Google Scholar 

  52. Rao G, Brodke D, Rondina M, et al (2002) Comparison of computerized tomography and direct visualization in thoracic pedicle screw placement. J Neurosurgery 97:223–226

    Google Scholar 

  53. Langston H, Foley KT (2006) Percutaneous placement of posterior cervical screws using three-dimensional fluoroscopy. Spine 31:536–540

    Article  Google Scholar 

  54. Datir SPD, Mitra SR (2004) Morphometric study of the thoracic vertebral pedicle in an Indian population. Spine 29:1174–1181

    Article  PubMed  Google Scholar 

  55. Ugur HC, Attar A, Uz A, Tekdemir I, Egemen N, Genc Y (2001) Thoracic pedicle: surgical anatomic evaluation and relations. J Spinal Disord 14:39–45

    Article  PubMed  CAS  Google Scholar 

  56. Richter M, Amiot LP, Neller S, Kluger P, Puhl W (2000) Computer-assisted surgery in posterior instrumentation of the cervical spine: an in-vitro feasibility study. Eur Spine J 9:S65–70

    Article  PubMed  Google Scholar 

  57. Sanelli PC, Tong S, Gonzalez G, et al (2002) Normal variation of vertebra artery on CT angiography and its implications for diagnosis of acquired pathology. J Comput Assist Tomogr 26:462–470

    Article  PubMed  Google Scholar 

  58. Ugur HC, Attar A, Uz A, Tekdemir I, Egemen N, Caglar S, Genc Y (2000) Surgical anatomic evaluation of the cervical pedicle and adjacent neural structures. Neurosurgery 47:1162–1168; comments 1168–1169

    Article  PubMed  CAS  Google Scholar 

  59. Xu R, Kang A, Ebraheim NA, Xoung RA (1999) Anatomic relation between the cervical pedicle and the adjacent neural structures. Spine 24:451–454

    Article  PubMed  CAS  Google Scholar 

  60. Heller JG, Silcox DH, Sutterlin CE (1995) Complications of posterior cervical plating. Spine 20:2442–2448

    Article  PubMed  CAS  Google Scholar 

  61. Conrad B, Cordista A, Horodyski MB, Rechtine G (2005) Biomechanical evaluation of the pullout strength of cervical screws. J Spinal Disord Tech 18:506–510

    Article  PubMed  Google Scholar 

  62. Hitchon PW, Brenton MD, Coppes JK, From AM, Torner JC (2003) Factors affecting pullout strength of self-drilling and self-tapping anterior cervical screws. Spine 28:9–13

    Article  PubMed  Google Scholar 

  63. Maiman DJ, Pintar FA, Yoganandan N, Reinartz J, Toselli R, Woodward E, Haid R (1992) Pull-out strength of Caspar cervical screw. Neurosurg 31:1097–1101

    Article  CAS  Google Scholar 

  64. Pitzen T, Barbier D, Tintinger F, Steudel WI, Strowitzki M (2002) Screw fixation to the posterior cortical shell does not influence peak torque and pullout in anterior cervical plating. Eur Spine J 11:494–499

    Article  PubMed  CAS  Google Scholar 

  65. Koller H, Hempfing A, Ferraris L, Meier O, Metz-Stavenhagen P (2006) 4- and 5-level anterior fusions of the cervical spine: review of literature and clinical results. Eur Spine J 16(12):2055–2071

    Article  Google Scholar 

  66. Ryken TC, Clausen JD, Traynelis VC, Goel VK (1995) Biomechanical analysis of bone mineral density, inseriton technique, screw torque, and holding strenght of anterior cervical plates. Neurosurgery 83:325–329

    CAS  Google Scholar 

  67. Spivak JM, Chen D, Kummer FJ (1999) The effect of locking fixation screws on the stability of anterior cervical plating. Spine 24:334–338

    Article  PubMed  CAS  Google Scholar 

  68. Heller JG, Estes BT, M Zaouali M, Diop A (1996) Biomechanical study of screws in the lateral masses: variables affecting pull-out resistance. J Bone Joint Surg Am 78(9):1315–1321

    PubMed  CAS  Google Scholar 

  69. Schlenk RP, Stewart T, Benzel EC (2003) The biomechanics of iatrogenic spinal destabilization and implant failure. Neurosurg Focus 15(3):Article 2

  70. Burval DJ, McLain RF, Milks R, Inceoglu S (2007) Primary pedicle screw augmentation in osteoporotic lumbar vertebrae—biomechanical analysis of pedicle fixation strength. Spine 32:1077–1083

    Article  PubMed  Google Scholar 

  71. Barrey C, Mertens P, Rumelhart C, Cotton F, Jund J, Perrin G (2004) Biomechanical evaluation of cervical lateral mass fixation: a comparison of the Roy-Camille and Magerl screw techniques. J Neurosurg 100(Spine 3):268–276

    PubMed  Google Scholar 

  72. Seybold EA, Baker JA, Criscitiello AA, Ordway BR, Park CK, Connolly PJ (1999) Characteristics of unicortical and bicortical bilateral mass screws in the cervical spine. Spine 24:2397–2403

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heiko Koller.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 9 (DOC 58.5 kb)

Table 10 (DOC 86.5 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koller, H., Acosta, F., Tauber, M. et al. Cervical anterior transpedicular screw fixation (ATPS)—Part II. Accuracy of manual insertion and pull-out strength of ATPS. Eur Spine J 17, 539–555 (2008). https://doi.org/10.1007/s00586-007-0573-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-007-0573-x

Keywords

Navigation