Skip to main content

Advertisement

Log in

Spinal fusion using an autologous growth factor gel and a porous resorbable ceramic

  • Original Article
  • Published:
European Spine Journal Aims and scope Submit manuscript

Abstract

Augmenting healing through a single application of an exogenous growth factor or bone morphogenetic protein is not a new concept. The use of autologous growth factors through platelet isolation and concentration provides multiple endogenous growth factors to the healing site. A posterolateral fusion model in aged sheep (5- to 6-year-old ewes) was used to examine the effects of the addition of growth factors through autologous platelet isolation on the biomechanic and histologic properties of the fusion using a resorbable coral bone graft substitute. At 6 months the combination of autologous growth factors to the Pro Osteon 500R plus aspirated bone marrow resulted in the greatest bending stiffness but not ultimate load. Autologous growth factors can be isolated from platelets and concentrated to provide multiple growth factors to the fusion site to aid in spinal fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 a
Fig. 2a–d
Fig. 3a–d
Fig. 4a–d

Similar content being viewed by others

References

  1. Anitua E (1999) Plasma rich in growth factors: preliminary results of use in the preparation of future sites for implants. Int J Oral Maxillofac Implants 14(4):529–535

    CAS  PubMed  Google Scholar 

  2. Banks RE, Forbes MA, Kinsey SE, Stanley A, Ingham E, Walters C, Selby PJ (1998) Release of the angiogenic cytokine vascular endothelial growth factor (VEGF) from platelets: significance for VEGF measurements and cancer biology. Br J Cancer 77(6):956–964

    CAS  PubMed  Google Scholar 

  3. Baramki HG, Steffen T, Lander P, Chang M, Marchesi D (2000) The efficacy of interconnected porous hydroxyapatite in achieving posterolateral lumbar fusion in sheep. Spine 25(9):1053–1060

    Article  CAS  PubMed  Google Scholar 

  4. Boden SD, Martin GJ Jr, Morone MA, Ugbo JL, Moskovitz PA (1999) Posterolateral lumbar intertransverse process spine arthrodesis with recombinant human bone morphogenetic protein 2/hydroxyapatite-tricalcium phosphate after laminectomy in the nonhuman primate. Spine 24(12):1179–1185

    Article  CAS  PubMed  Google Scholar 

  5. Boden SD, Martin GJ Jr, Morone MA, Ugbo JL, Titus L, Hutton WC (1999) The use of coralline hydroxyapatite with bone marrow, autogenous bone graft, or osteoinductive bone protein extract for posterolateral lumbar spine fusion. Spine 24(4):320–327

    Article  CAS  PubMed  Google Scholar 

  6. Boden SD, Schimandle JH (1995) Biologic enhancement of spinal fusion. Spine 20 [Suppl 24]:113S–123S

  7. Boden SD, Schimandle JH, Hutton WC (1995) 1995 Volvo Award in basic sciences. The use of an osteoinductive growth factor for lumbar spinal fusion. II. Study of dose, carrier, and species. Spine 20(24):2633–2644

    CAS  PubMed  Google Scholar 

  8. Boden SD, Titus L, Hair G, Liu Y, Viggeswarapu M, Nanes MS, Baranowski C (1998) Lumbar spine fusion by local gene therapy with a cDNA encoding a novel osteoinductive protein (LMP-1). Spine 23(23):2486–2492

    Article  CAS  PubMed  Google Scholar 

  9. Bolander ME (1992) Regulation of fracture repair by growth factors. Proc Soc Exp Biol Med 200(2):165–170

    CAS  PubMed  Google Scholar 

  10. Boo JS, Yamada Y, Okazaki Y, Hibino Y, Okada K, Hata K, Yoshikawa T, Sugiura Y, Ueda M (2002) Tissue-engineered bone using mesenchymal stem cells and a biodegradable scaffold. J Craniofac Surg 13(2):231–239; discussion 240–243

    Article  PubMed  Google Scholar 

  11. Bozic KJ, Glazer PA, Zurakowski D, Simon BJ, Lipson SJ, Hayes WC (1999) In vivo evaluation of coralline hydroxyapatite and direct current electrical stimulation in lumbar spinal fusion. Spine 24(20):2127–2133

    Article  CAS  PubMed  Google Scholar 

  12. Canalis E (1985) Effect of growth factors on bone cell replication and differentiation. Clin Orthop 193:246–263

    CAS  PubMed  Google Scholar 

  13. Cook SD, Dalton JE, Tan EH, Whitecloud TS 3rd, Rueger DC (1994) In vivo evaluation of recombinant human osteogenic protein (rhOP-1) implants as a bone graft substitute for spinal fusions. Spine 19(15):1655–1663

    CAS  PubMed  Google Scholar 

  14. Cook SD, Rueger DC (1996) Osteogenic protein-1: biology and applications. Clin Orthop 324:29–38

    PubMed  Google Scholar 

  15. Dong J, Kojima H, Uemura T, Kikuchi M, Tateishi T, Tanaka J (2001) In vivo evaluation of a novel porous hydroxyapatite to sustain osteogenesis of transplanted bone marrow-derived osteoblastic cells. J Biomed Mater Res 57(2):208–216

    Article  CAS  PubMed  Google Scholar 

  16. Dong J, Uemura T, Kikuchi M, Tanaka J, Tateishi T (2002) Long-term durability of porous hydroxyapatite with low-pressure system to support osteogenesis of mesenchymal stem cells. Biomed Mater Eng 12(2):203–209

    CAS  PubMed  Google Scholar 

  17. Dong J, Uemura T, Shirasaki Y, Tateishi T (2002) Promotion of bone formation using highly pure porous beta-TCP combined with bone marrow-derived osteoprogenitor cells. Biomaterials 23(23):4493–4502

    Article  CAS  PubMed  Google Scholar 

  18. Einhorn TA (1998) The cell and molecular biology of fracture healing. Clin Orthop 355 [Suppl]:S7–21

    Google Scholar 

  19. Erbe EM, Marx JG, Clineff TD, Bellincampi LD (2001) Potential of an ultraporous beta-tricalcium phosphate synthetic cancellous bone void filler and bone marrow aspirate composite graft. Eur Spine J 10 [Suppl 2]:S141–146

  20. Gazdag AR, Lane JM, Glaser D, Forster RA (1995) Alternatives to autogenous bone graft: efficacy and indications. J Am Acad Orthop Surg 3(1):1–8

    PubMed  Google Scholar 

  21. Glazer PA, Heilmann MR, Lotz JC, Bradford DS (1998) Use of ultrasound in spinal arthrodesis. A rabbit model. Spine 23(10):1142–1148

    Article  PubMed  Google Scholar 

  22. Gombotz WR, Pankey SC, Bouchard LS, Phan DH, Puolakkainen PA (1994) Stimulation of bone healing by transforming growth factor-beta 1 released from polymeric or ceramic implants. J Appl Biomater 5(2):141–150

    CAS  PubMed  Google Scholar 

  23. Grauer JN, Patel TC, Erulkar JS, Troiano NW, Panjabi MM, Friedlaender GE (2001) 2000 Young Investigator Research Award winner. Evaluation of OP-1 as a graft substitute for intertransverse process lumbar fusion. Spine 26(2):127–133

    Article  CAS  PubMed  Google Scholar 

  24. Guigui P, Plais PY, Flautre B, Viguier E, Blary MC, Chopin D, Lavaste F, Hardouin P (1994) Experimental model of posterolateral spinal arthrodesis in sheep. Part 2. Application of the model: evaluation of vertebral fusion obtained with coral (Porites) or with a biphasic ceramic (Triosite). Spine 19(24):2798–2803

    CAS  PubMed  Google Scholar 

  25. Guigui P, Plais PY, Flautre B, Viguier E, Blary MC, Sales De Gauzy J, Chopin D, Lavaste F, Hardouin P (1994) Experimental model of posterolateral spinal arthrodesis in sheep. Part 1. Experimental procedures and results with autologous bone graft. Spine 19(24):2791–2797

    CAS  PubMed  Google Scholar 

  26. Helm GA, Sheehan JM, Sheehan JP, Jane JA Jr, diPierro CG, Simmons NE, Gillies GT, Kallmes DF, Sweeney TM (1997) Utilization of type I collagen gel, demineralized bone matrix, and bone morphogenetic protein-2 to enhance autologous bone lumbar spinal fusion. J Neurosurg 86(1):93–100

    CAS  PubMed  Google Scholar 

  27. Holmes RE (1979) Bone regeneration within a coralline hydroxyapatite implant. Plast Reconstr Surg 63(5):626–633

    CAS  PubMed  Google Scholar 

  28. Ito M, Fay LA, Ito Y, Yuan MR, Edwards WT, Yuan HA (1997) The effect of pulsed electromagnetic fields on instrumented posterolateral spinal fusion and device-related stress shielding. Spine 22(4):382–388

    Article  CAS  PubMed  Google Scholar 

  29. Joyce ME, Terek RM, Jingushi S, Bolander ME (1990) Role of transforming growth factor-beta in fracture repair. Ann N Y Acad Sci 593:107–123

    CAS  PubMed  Google Scholar 

  30. Kahanovitz N, Arnoczky SP, Nemzek J, Shores A (1994) The effect of electromagnetic pulsing on posterior lumbar spinal fusions in dogs. Spine 19(6):705–709

    CAS  PubMed  Google Scholar 

  31. Kasperk CH, Wergedal JE, Mohan S, Long DL, Lau KH, Baylink DJ (1990) Interactions of growth factors present in bone matrix with bone cells: effects on DNA synthesis and alkaline phosphatase. Growth Factors 3(2):147–158

    CAS  PubMed  Google Scholar 

  32. Kassolis JD, Rosen PS, Reynolds MA (2000) Alveolar ridge and sinus augmentation utilizing platelet-rich plasma in combination with freeze-dried bone allograft: case series. J Periodontol 71(10):1654–1661

    CAS  PubMed  Google Scholar 

  33. Kiritsy CP, Lynch AB, Lynch SE (1993) Role of growth factors in cutaneous wound healing: a review. Crit Rev Oral Biol Med 4(5):729–760

    CAS  PubMed  Google Scholar 

  34. Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR (1998) Platelet-rich plasma: growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 85(6):638–646

    CAS  PubMed  Google Scholar 

  35. Muschler GF, Hyodo A, Manning T, Kambic H, Easley K (1994) Evaluation of human bone morphogenetic protein 2 in a canine spinal fusion model. Clin Orthop 308:229–240

    PubMed  Google Scholar 

  36. Muschler GF, Negami S, Hyodo A, Gaisser D, Easley K, Kambic H (1996) Evaluation of collagen ceramic composite graft materials in a spinal fusion model. Clin Orthop 328: 250–260

    PubMed  Google Scholar 

  37. Nanu A, Taneja N, Sood SK (1980) Preparation and standardisation of platelet rich plasma and platelet concentrates in a developing blood bank. Indian J Med Res 71:661–7

    CAS  PubMed  Google Scholar 

  38. Noshi T, Yoshikawa T, Dohi Y, Ikeuchi M, Horiuchi K, Ichijima K, Sugimura M, Yonemasu K, Ohgushi H (2001) Recombinant human bone morphogenetic protein-2 potentiates the in vivo osteogenic ability of marrow/hydroxyapatite composites. Artif Organs 25(3):201–208

    Article  CAS  PubMed  Google Scholar 

  39. Ohgushi H, Okumura M, Tamai S, Shors EC, Caplan A (1990) Marrow cell induced osteogenesis in porous hydroxyapatite and tricalcium phosphate: a comparative histomorphometric study of ectopic bone formation. J Biomed Mater Res 24(12):1563–1570

    CAS  PubMed  Google Scholar 

  40. Reiss RF, Katz AJ (1976) Optimizing recovery of platelets in platelet rich plasma by the simplex strategy. Transfusion 16(4):370–374

    CAS  PubMed  Google Scholar 

  41. Sartoris DJ, Holmes RE, Bucholz RW, Mooney V, Resnick D (1987) Coralline hydroxyapatite bone-graft substitutes in a canine diaphyseal defect model. Radiographic-histometric correlation. Invest Radiol 22(7):590–596

    CAS  PubMed  Google Scholar 

  42. Shors EC (1999) Coralline bone graft substitutes. Orthop Clin North Am 30(4):599–613

    CAS  PubMed  Google Scholar 

  43. Walsh WR, Harrison J, Loefler A, Martin T, Van Sickle D, Brown MK, Sonnabend DH (2000) Mechanical and histologic evaluation of Collagraft in an ovine lumbar fusion model. Clin Orthop 375:258–266

    Article  PubMed  Google Scholar 

  44. Whitman DH, Berry RL, Green DM (1997) Platelet gel: an autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J Oral Maxillofac Surg 55(11):1294–1299

    CAS  PubMed  Google Scholar 

  45. Zdeblick TA, Cooke ME, Kunz DN, Wilson D, McCabe RP (1994) Anterior cervical discectomy and fusion using a porous hydroxyapatite bone graft substitute. Spine 19(20):2348–2357

    CAS  PubMed  Google Scholar 

  46. Zdeblick TA, Ghanayem AJ, Rapoff AJ, Swain C, Bassett T, Cooke ME, Markel M (1998) Cervical interbody fusion cages. An animal model with and without bone morphogenetic protein. Spine 23(7):758–765; discussion 766

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Interpore-Cross for material and support for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William R. Walsh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, W.R., Loefler, A., Nicklin, S. et al. Spinal fusion using an autologous growth factor gel and a porous resorbable ceramic. Eur Spine J 13, 359–366 (2004). https://doi.org/10.1007/s00586-003-0597-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00586-003-0597-9

Keywords

Navigation