Ameliorative effect of Gongronema latifolium leaf extract on alloxan-induced diabetic cardiomyopathy in Wistar rats model

Abstract

Diabetic cardiomyopathy (DCM) pathogenesis is complex, and the management options for DCM are limited. This study was designed to investigate the effect of Gongronema latifolium leaf extract on DCM in alloxan-induced diabetic rats. Alloxan monohydrate was used to induce diabetes by an intraperitoneal injection of (150 mg/kg). Three diabetic groups were administered aqueous leaf extract of Gongronema latifolium at 6.36, 12.72, and 25.44 mg/kg bodyweight (BW) respectively; a group was administered with metformin (5 mg/kg BW), while the other two served as positive and negative control. Thereafter, fasting blood glucose, antioxidant enzymes, malondialdehyde level, serum lactate dehydrogenase, creatine kinase-MB, cardiac Troponin I, C-reactive protein, and TNF-α were determined by standard methods. Aqueous extract of Gongronema latifolium leaf significantly (p < 0.05) reduced the alloxan-induced increases in blood glucose, malondialdehyde, serum lactate dehydrogenase, creatine kinase-MB, cardiac Troponin I, C-reactive protein, and tumor necrosis factor-α and increased the alloxan-induced decreases in superoxide dismutase, catalase, glutathione peroxidase, reduced glutathione, and glutathione transferase activities. All these changes were compared with those of metformin-treated diabetic rats. The data from this study suggest that aqueous extract of Gongronema latifolium ameliorated DCM by inhibiting redox imbalance and inflammation in diabetic rats.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Ahmad MS, Pischetsrieder M, Ahmed N (2007) Aged garlic extract and S-allyl cysteine prevent formation of advanced glycation end products. Euro J Pharmacol 561:32–38

    CAS  Article  Google Scholar 

  2. Ajiboye BO, Edobor G, Ojo OA, Onikanni SA, Olarewaju OI, Muhammad NO (2014) Effect of aqueous leaf extract of Senecio biafrae on hyperglycaemic and serum lipid profile of alloxan-induced diabetic rats. Inter J Dis Disor 2(1):059–064

    Google Scholar 

  3. Ajiboye BO, Ojo OA, Adeyonu O, Imiere O, Oyinloye BE, Ogunmodede O (2018a) Ameliorative activity of ethanolic extract of Artocarpus heterophyllus stem bark on alloxan-induced diabetic rats. Adv Pharm Bull 8(1):141–147

    CAS  Article  Google Scholar 

  4. Ajiboye BO, Ojo OA, Akuboh OS, Okesola MA, Idowu O, Amuzat AO (2018b) Anti-hyperglycemic and anti-inflammatory activities of polyphenolic-rich extract of Syzygium cumini Linn leaves in alloxan-induced diabetic rats. J Evid Based Integra Med 23:1–8

    Google Scholar 

  5. Ajiboye BO, Oyinloye BE, Agboinghale PE, Onikanni SA, Asogwa E, Kappo PA (2019) Antihyperglycaemia and related gene expressions of aqueous extract of Gongronema latifolium leaf in alloxan-induced diabetic rats. Pharm Biol 57(1):604–611

    CAS  Article  Google Scholar 

  6. Al-Rasheed, N.M., Hasan, I.H., Al-Amin, M.A., Al-Ajmi, H.N., Mohamad, R.A., ‘Mahmoud, A.M., 2017. Simvastatin ameliorates diabetic cardiomyopathy by attenuating oxidative stress and inflammation in rats. Oxidative Medicine and Cellular Longevity, 2017, Article ID 1092015, 13 pages https://doi.org/10.1155/2017/1092015, 1092013

  7. Asbun J, Villarreal FJ (2006) The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol 47:693–700

    CAS  Article  Google Scholar 

  8. Babu PV, Sabitha KE, Shyamaladevi CS (2006) Therapeutic effect of green tea extract on oxidative stress in aorta and heart of streptozotocin diabetic rats. Chem Biol Interact 162:114–120

    CAS  Article  Google Scholar 

  9. Badole, S.L., Bodhankar, S.L., 2010. Antidiabetic activity of cycloart-23-ene-3훽, 25-diol (B2) isolated from Pongamia pinnata (L. Pierre) in streptozotocin-nicotinamide induced diabetic mice. Euro J Pharmacol 632, (1–3) 103–109, 103

  10. Brownlee M (1995) Advanced protein glycosylation in diabetes and aging. Ann Rev Med 46:223–234

    CAS  Article  Google Scholar 

  11. Cai L (2006) Suppression of nitrative damage by metallothionein in diabetic heart contributes to the prevention of cardiomyopathy. Free Radic Biol Med 41:851–861

    CAS  Article  Google Scholar 

  12. Cai L, Kang YJ (2001) Oxidative stress and diabetic cardiomyopathy: a brief review. Cardiovascular Toxicol 1(3):181–193

    CAS  Article  Google Scholar 

  13. Cai L, Wang J, Li Y, Sun X, Wang L, Zhou Z, James Kang Y (2005) Inhibition of superoxide generation and associated nitrosative damage is involved in metallothionein prevention of diabetic cardiomyopathy. Diabetes. 54(6):1829–1837

    CAS  Article  Google Scholar 

  14. Cai L, Wang Y, Zhou G, Chen T, Song Y, Li X, Kang YJ (2006) Attenuation by metallothionein of early cardiac cell death via suppression of mitochondrial oxidative stress results in a prevention of diabetic cardiomyopathy. J Am Coll Cardiol 48:1688–1697

    CAS  Article  Google Scholar 

  15. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohlrogge AW, Malanda B (2018) IDF Diabetes Atlas: global estimates of diabetes prevalence for 2017 and projections for 2045″, Diabetes Res. Clin Pract 138:271–281

    CAS  Google Scholar 

  16. Frieler RA, Mortensen RM (2015) Immune cell and other noncardiomyocyte regulation of cardiac hypertrophy and remodeling. Circulation. 131(11):1019–1030

    Article  Google Scholar 

  17. Haidara MA, Yassin HZ, Rateb M, Ammar H, Zorkani MA (2006) Role of oxidative stress in development of cardiovascular complications in diabetes mellitus. Curr Vasc Pharmacol 4:215–227

    CAS  Article  Google Scholar 

  18. Koya D, King GL (1998) Protein kinase C activation and the development of diabetic complications. Diabetes. 47:859–866

    CAS  Article  Google Scholar 

  19. Mann DL (2015) Innate immunity and the failing heart: the cytokine hypothesis revisited. Circulation Res 116(7):1254–1268

    CAS  Article  Google Scholar 

  20. Maritim AC, Sanders RA, Watkins JB III (2003) Diabetes, oxidative stress, and antioxidants: a review. J Biochem Molecular Toxicol 17(1):24–38

    CAS  Article  Google Scholar 

  21. Maya L, Villarreal FJ (2010) Diagnostic approaches for diabetic cardiomyopathy and myocardial fibrosis. J Molecular and Cellular Cardiol 48(3):524–529

    CAS  Article  Google Scholar 

  22. Mishra A, Bhatti R, Singh A, Singh Ishar MP (2010) Ameliorative effect of the cinnamon oil from Cinnamomum zeylanicum upon early stage diabetic nephropathy. Planta Med 76:412–417

    CAS  Article  Google Scholar 

  23. Morebise O, Fafunso MA, Makinde JM, Olagide OA, Awe EO (2002) Anti-inflammatory property of the leaves of Gongronema latifolium. Phytother. Res 16:75–77

    Article  Google Scholar 

  24. Moussa S (2008) Oxidative stress in diabetes mellitus. Romanian J Biophysics 18:225–236

    CAS  Google Scholar 

  25. Murarka S, Movahed MR (2010) Diabetic cardiomyopathy. J Cardiac Failure 16(12):971–979

    Article  Google Scholar 

  26. Ojo OA, Ojo AB, Ajiboye BO, Oyinloye BE, Imiere O, Adeyonu O (2017) Ameliorative potentials of Blighia sapida K.D. Koenig bark against pancreatic-cell dysfunction in alloxan-induced diabetic rats. J. Complement. Integr. Med 14:20160145

    CAS  Google Scholar 

  27. Prabhu SD, Frangogiannis NG (2016) The biological basis for cardiac repair after myocardial infarction: from inflammation to fibrosis. Circulation Res 119(1):91–112

    CAS  Article  Google Scholar 

  28. Rutter MK, Meigs JB, Sullivan LM, D'Agostino RB Sr, Wilson PW (2004) C-reactive protein, the metabolic syndrome, and prediction of cardiovascular events in the Framingham offspring study. Circulation. 110(4):380–385

    CAS  Article  Google Scholar 

  29. Seddon M, Looi YH, Shah AM (2007) Oxidative stress and redox signalling in cardiac hypertrophy and heart failure. Heart. 93(8):903–907

    CAS  Article  Google Scholar 

  30. Sulaiman, M., Matta, M.J., Sunderesan, N.R., Gupta, M.P., Periasamy, M., 2010. Resveratrol, an activator of SIRT1, upregulates sarcoplasmic calcium ATPase and improves cardiac function in diabetic cardiomyopathy. Am J. Physiol.—Heart and Circulatory Physiol 298, (3) H833–H843

  31. Sun M, Chen M, Dawood F, Zurawska U, Li JY, Parker T, Kassiri Z, Kirshenbaum LA, Arnold M, Khokha R, Liu PP (2007) Tumor necrosis factor-α mediates cardiac remodeling and ventricular dysfunction after pressure overload state. Circulation 115(11):1398–1407

    CAS  Article  Google Scholar 

  32. Suzuki H, Kayama Y, Sakamoto M, Iuchi H, Shimizu I, Yoshino T, Katoh D, Katoh D, Nagoshi T, Tojo K, Minamino T, Yoshimura M, Utsunomiya K (2015) Arachidonate 12/15-lipoxygenase-induced inflammation and oxidative stress are involved in the development of diabetic cardiomyopathy. Diabetes. 64(2):618–630

    CAS  Article  Google Scholar 

  33. Ugochukwu NH, Babady NE, Cobourne M, Gasses SR (2003) The effect of Gongronema latifolium extract on serum lipid profile and oxidative stress in hepatocyte of diabetic rats. J Biosci 28:1–5

    CAS  Article  Google Scholar 

  34. Ugwu CE, Olajide JE, Alumanah JC, Ezeanyika LUS (2010) Comparative effects of the leaves of Gongronema latifolium and Telfairia occidentalis incorporated diets on the lipid profiles of rats. Global J Pure and Appli Sci 16:319–324

    Google Scholar 

  35. Uloko, A.E., Musa, B.M., Ramalan, M.A., Gezawa, I.D., Puepet, F.H Puepet F.H., Uloko A.T., Borodo M.M., Sada K.B., 2018. Prevalence and risk factors for diabetes mellitus in Nigeria: a systematic review and meta-analysis. Diabetes Ther 9, 1307–1316

  36. Upaganlawar A, Balaraman R (2010) Protective effects of Lagenaria siceraria (Molina) fruit juice in isoproterenol induced myocardial infarction. Int J Pharmacol 6(5):645–651

    Article  Google Scholar 

  37. Xi S, Zhou G, Zhang X, Zhang W, Cai L, Zhao C (2009) Protective effect of total aralosides of Aralia elata (Miq) seem (TASAES) against diabetic cardiomyopathy in rats during the early stage, and possible mechanisms. Exp Molecul Med vol 41(8):538–547

    CAS  Article  Google Scholar 

  38. Yakubu MT, Uwazie N, Igunnu A (2016) Anti-diabetic activity of aqueous extract of Senna alata (fabacea) flower in alloxan-induced diabetic male rats. Cameroon J BiolBiochem Sci 24:7–17

    Google Scholar 

Download references

Acknowledgments

This study was supported by the South African Medical Research Council via funding collected from the South African National Treasury. Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the South African Medical Research Council.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oluwafemi Adeleke Ojo.

Ethics declarations

Conflicts of interest

Authors declare that they have no conflict of interest.

Ethical approval

Research involving animals complied with all relevant national regulations and institutional policies of Afe Babalola University for the care and use of animals. This study was approved by the ABUAD Animal Ethical Committee (approval number 19/ABUADSCI/016).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Okesola, M.A., Ojo, O.A., Onikanni, S.A. et al. Ameliorative effect of Gongronema latifolium leaf extract on alloxan-induced diabetic cardiomyopathy in Wistar rats model. Comp Clin Pathol (2020). https://doi.org/10.1007/s00580-020-03134-8

Download citation

Keywords

  • Diabetic cardiomyopathy
  • Gongronema latifolium
  • Antioxidant
  • Inflammation
  • Cardiac enzymes