Skip to main content

Advertisement

Log in

Medicinal properties of Clerodendrum glaburum E may leaf extracts: phytochemical constituents, antioxidant, cytotoxicity, and carbohydrate-metabolizing enzyme inhibitory potentials

  • Original Article
  • Published:
Comparative Clinical Pathology Aims and scope Submit manuscript

Abstract

The phytochemical constituents, antioxidant, and cytotoxicity as well as the inhibitory potentials of Clerodendrum glaburum on key carbohydrate metabolizing enzymes were investigated. The plant sample was extracted separately with hexane, EtOAc, MeOH, and water. The phytochemical analysis and antioxidant assays of the extracts were achieved using standard procedures; the antidiabetic capability of the extracts against the actions of α-amylase and α-glucosidase was examined while their cytotoxicity was tested against Vero cells. Highest quantity of phenol (65.97 mg gallic acid g−1), flavonoid (47.02 mg quercetin g−1), and flavanol (173.74 mg catechin g−1) were observed in MeOH extract. Also, MeOH extract had the most potent ability (p < 0.05) to scavenge ABTS (0.05 mg/mL), DPPH (0.17 mg/mL), and superoxide anion (0.36 mg/mL) than other extracts and standards. Stronger inhibition (p < 0.05) against metal chelation (26.41 mg/mL) and FRAP (5.92 mg/mL) were observed in water extract compared to other extracts; it also competes favorably with the standard. EtOAc extract displayed best scavenging potentials (p < 0.05) against hydroxyl radical than other extracts. Methanol (0.71 mg/mL) and aqueous (0.19 mg/mL) extracts displayed more potent inhibition against the actions of α-amylase and α-glucosidase respectively compared to acarbose and other extracts. Hexane extract displayed better antidiabetic activities as revealed by its moderate α-amylase (2.54 mg/mL) and potent α-glucosidase (0.53 mg/mL) inhibitions compared to acarbose. The hexane, methanol, and aqueous extracts were non-toxic against Vero cells, with LC50 of 0.11, 0.23, and 0.52 mg/mL respectively. C. glaburum leaves contain active phytochemicals that can be beneficial in managing diabetes and other oxidative stress-induced disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adisakwattana S, Charoenlertkul P, Yibchok-Anun S (2009) Alpha-glucosidase inhibitory activity of cyanidin-3-galactoside and synergistic effect with acarbose. J Enzyme Inhib Med Chem 24:65–69

    Article  CAS  PubMed  Google Scholar 

  • American Diabetes Association (2011) Diagnosis and classification of diabetes mellitus. Diabetes Care 34:62–69

    Article  CAS  Google Scholar 

  • Apostolidis E, Kwon YI, Shetty K (2007) Inhibitory potential of herb, fruit, and fungal-enriched cheese against key enzymes linked to type 2 diabetes and hypertension. Innovative Food Sci Emerg Technol 8:46–54

    Article  CAS  Google Scholar 

  • Aslan M, Orhan N, Orhan DD, Ergun F (2010) Hypoglycemic activity and antioxidant potential of some medicinal plants traditionally used in Turkey for diabetes. J Ethnopharmacol 128:384–389

    Article  PubMed  Google Scholar 

  • Babior BM (2000) Phagocytes and oxidative stress. Am J Med 109:33–44

    Article  CAS  PubMed  Google Scholar 

  • Bagri P, Ali M, Aeri V, Bhowmik M, Sultana S (2009) Antidiabetic effect of Punica granatum flowers: effect on hyperlipidemia, pancreatic cells lipid peroxidation and antioxidant enzymes in experimental diabetes. Food Chem Toxicol 47:50–54

    Article  CAS  PubMed  Google Scholar 

  • Benzie IFF, Strain JJ (2014) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 239:70–76

    Article  Google Scholar 

  • Braca A, Tommasi ND, Bari LD, Pizza C, Politi M, Morelli I (2001) Antioxidant principles from Bauhinia terapotensis. J Nat Prod 64:892–895

    Article  CAS  PubMed  Google Scholar 

  • Chika A, Bello SO (2010) Antihyperglycaemic activity of aqueous leaf extract of Combretum micranthum (Combretaceae) in normal and alloxan-induced diabetic rats. J Ethnopharmacol 129:34–37

    Article  PubMed  Google Scholar 

  • Copeland RA (2000) Enzymes: a practical introduction to structure, mechanism and data analysis. Wiley-VCH, New York

    Book  Google Scholar 

  • Dinis TCP, Madeira VMC, Almeida IM (1994) Action of phenolic derivatives (acetaminophen, salycilate and 5-aminosalycilate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch Biochem Biophys 315:161–169

    Article  CAS  PubMed  Google Scholar 

  • Dnyaneshwar MN, Archana RJ (2013) In vitro inhibitory effects of Pithecellobium dulce (Roxb.) Benth. Seeds on intestinal α-glucosidase and pancreatic α-amylase. J Biochem Technol 4:616–621

    Google Scholar 

  • Edeoga HO, Okwu DE, Mbaebie BO (2005) Phytochemical constituents of some Nigerian medicinal plants. Afr J Biotechnol 47:685–688

    Article  Google Scholar 

  • Elisha IL, Dzoyem JP, McGaw LJ, Botha FS, Eloff JN (2016) The anti-arthritic, anti-inflammatory, antioxidant activity and relationships with total phenolics and total flavonoids of nine South African plants used traditionally to treat arthritis. BMC Complement Altern Med 16:307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elsnoussi AHM, Mohammad JAS, Lee FA, Sadikun A, Chan SH, Tan S (2012) Potent α-glucosidase and α-amylase inhibitory activities of standardized 50% ethanolic extracts and sinen set in from Orthosiphon stamineus Benth as antidiabetic mechanism. BMC Complement Altern Med 12:176

    Article  CAS  Google Scholar 

  • Fong DS, Aiello LP, Ferris FL 3rd, Klein R (2004) Diabetic retinopathy. Diabetes Care 27:2540–2253

    Article  PubMed  Google Scholar 

  • Fouad MA, Wanas AS, Khalil HE (2013) Phytochemical and biological studies of Clerodendrum Glabraum leaves. Int J Pharmacogn Phytochem 28(2):1164–11688

    Google Scholar 

  • Fowler MJ (2008) Microvascular and macrovascular complications of diabetes. Clin Diabetes 26(2):77–82

    Article  Google Scholar 

  • Gil MI, Tomas-Barberan FA, Hess-Pierce B, Holcroft DM, Kader AA (2000) Antioxidant activity of pomegranate juice and its relationship with phenolic composition and processing. J Agric Food Chem 48:4581–4589

    Article  CAS  PubMed  Google Scholar 

  • Gülçin I, Elmastaş M, Aboul-Enein HY (2007) Determination of antioxidant and radical scavenging activity of basil (Ocimum basilicum L. family Lamiaceae) assayed by different methodologies. Phytother Res 21(4):354–361

    Article  CAS  PubMed  Google Scholar 

  • Hye YK, Byung HM, Hak JL, Don HC (2004) Flavonol glycosides from the leaves of Eucommia ulmoides O with glycation inhibitory activity. J Ethnopharmacol 93(2–3):227–230

    Google Scholar 

  • Kajaria D, Tripathi JS, Tiwari SK (2013) Phytochemical composition and in vitro antimicrobial and antioxidant activities of anti-asthmatic polyherbal compounds. Elixir Hum Physiol 6:16666–16671

    Google Scholar 

  • Kazeem MI, Abimbola SG, Ashafa AOT (2013) Inhibitory potential of Gossypium arboreum leaf extracts on diabetes key enzymes, α-amylase and α-glucosidase. Bangladesh J Pharmacol 8:149–155

    Article  Google Scholar 

  • Krentz AJ, Baile CJ (2005) Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65:385–411

    Article  CAS  PubMed  Google Scholar 

  • Kumaran A, Karunakaran RJ (2007) In vitro antioxidant activities of methanol extracts of Phyllantus species from India. Lebensm Wiss Technol 40:344–352

    Article  CAS  Google Scholar 

  • Kwon YI, Apostolidis E, Shetty K (2008) In vitro studies of eggplant (Solanum melongena) phenolics as inhibitors of key enzymes relevant for type 2 diabetes and hypertension. Bioresour Technol 99:2981–2988

    Article  CAS  PubMed  Google Scholar 

  • Liang N, Kitts DD (2014) Antioxidant property of coffee components: assessment of methods that define mechanisms of action. Molecules 19:19180–19208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu X, Kim JK, Li Y, Li J, Liu F, Chen X (2005) Tannic acid stimulates glucose transport and inhibits adipocyte differentiation in 3T3-li cells. J Nutr 135(2):165–171

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Ooi VEC, Chang ST (1997) Free radical scavenging activity of mushroom polysaccharide extracts. Life Sci 60:763–771

    Article  CAS  PubMed  Google Scholar 

  • Mahomoodally F (2013) Traditional medicines in Africa: an appraisal of ten potent African medicinal plants. Evid Based Complement Alternat Med 2013:1–14

    Article  Google Scholar 

  • Masevhea NA, Awouafack MD, Ahmed AS, McGaw LJ, Eloff JN (2013) Clerodendrumic acid, a new triterpenoid from Clerodendrum glabrum(Verbenaceae), and antimicrobial activities of fractions and constituents. Helv Chim Acta 96:1693–1703

    Article  CAS  Google Scholar 

  • Mccue PP, Shetty K (2004) Inhibitory effects of rosmarinic acid extracts on porcine pancreatic α-amylase in vitro. Asia Pac J Clin Nutr 13:101–106

    CAS  PubMed  Google Scholar 

  • McGaw LJ, Steenkamp V, Eloff JN (2007) Evaluation of Athrixia bush tea for cytotoxicity, antioxidant activity, caffeine content and presence of pyrrolizidine alkaloids. J Ethnopharmacol 110:16–22

    Article  CAS  PubMed  Google Scholar 

  • Miliauskas G, Yenkutonis PR, Vanbeek TA (2004) Screening of radical scavenging activity of some medicinal and aromatic plants extracts. Food Chem 85:231–237

    Article  CAS  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Müller L, Fröhlich K, Böhm V (2011) Comparative antioxidant activities of carotenoids measured by ferric reducing antioxidant power (FRAP), ABTS bleaching assay (αTEAC), DPPH assay and peroxyl radical scavenging assay. Food Chem 129(1):139–148

    Article  CAS  Google Scholar 

  • Oboh G, Puntel RL, Rocha JBT (2007) Hot pepper (Capsicum annuum, Tepin and Capsicum chinese, Habanero) prevents Fe2+ induced lipid peroxidation in brain: in vitro. Food Chem 102:178–185

    Article  CAS  Google Scholar 

  • Ogundajo AL, Kazeem MI, Owoyele OA, Ogunmoye AO, Ogunwande IA (2016) Inhibition of α-amylase and α-glucosidase by Acanthus montanus leaf extracts. Br J Pharm Res 9:1–8

    Article  Google Scholar 

  • Raymond MH, Sandy A, Andrey LB et al (2004) “Labiatae” the families and genera of vascular plants, volume VII. Springer-Verlag, Germany

    Google Scholar 

  • Re R, Pellegrini N, Proteggente A (1994) Antioxidant activity applying an improved ABTS radical cation decolourisation assay. Free Radic Biol Med 26:1231–1237

    Article  Google Scholar 

  • Samatha T, Shyamsundarachary R, Srinivas RS (2012) Quantification of total phenolic and total flavonoid contents in extracts of Oroxylum indicum L. Kurz Asian J Pharm Clin Res 5:177–179

    Google Scholar 

  • Schmidt E, Lotter M, McCleland W (2002) Trees and shrubs of Mpumalanga and Kruger National Park. Jacana Media

  • Sindhu M, Emilia Abraham T (2005) In vitro antioxidant activity and scavenging effects of Cinnamonium verum leaf extract assayed by different methodologies. Food Chem Toxicol 44:198–206

    Google Scholar 

  • Sofowora EA (1982) Medicinal plants and traditional medicine in Africa. John Wiley and Sons, New York

    Google Scholar 

  • Steven JW, Laura H, Russ S, Patrick AR, Richard GO (1998) Phylogeny in Labiataes. L., inferred from cpDNA sequences. Plant Syst Evol 209:265–274

    Article  Google Scholar 

  • Suba V, Murugesan T, Rao RB, Ghosh L, Pal M, Mandal SC, Saha BP (2004) Antidiabetic potential of Barleria lupulina extract in rats. Fitoterapia 75:1–4

    Article  CAS  PubMed  Google Scholar 

  • Tadera K, Minami Y, Takamatsu K, Matsuoka T (2006) Inhibition of alpha-glucosidase and alpha-amylase by flavonoids. J Nutr Sci Vitaminol 52:149–153

    Article  CAS  PubMed  Google Scholar 

  • Thomas V, Grant R, Van Gogh J (2004) Sappi tree spotting Highveld and Drakensberg. Jacana Media, South Africa

    Google Scholar 

  • Trease GE, Evans WC (1978) Pharmacognosy. Bailliere Tindall Limited, United Kingdom

    Google Scholar 

  • Tundis R, Loizzo MR, Menichini F (2010) Natural products as α-amylase and α-glucosidase inhibitors and their hypoglycaemic potential in the treatment of diabetes. Mini-Rev Med Chem 10:315–331

    Article  CAS  PubMed  Google Scholar 

  • Tung YCL, Rimmington D, O’Rahilly S, Coll AP (2007) Pro-opiomelanocortin (POMC) modulates the thermogenic and physical activity responses to high fat feeding and markedly influences dietary fat preference. J Endocrinol 148:5331–5338

    Article  CAS  Google Scholar 

  • Van Wyk BE, Van Oudtshoorn B, Gericke N (2009) Turning folklore into an ethnomedicinal catalogue Medicinal Plants of South Africa. Briza, South Africa

    Google Scholar 

  • VanWyk B, VanWyk P (1997) Field guide to trees of Southern Africa. Struik, South Africa

    Google Scholar 

  • Wolfe K, Wu X, Liu RH (2003) Antioxidant activity of apple peels. J Agric Food Chem 51:609–614

    Article  CAS  PubMed  Google Scholar 

  • Yang CY, Wang J, Zhao Y, Shen L, Jiang X, Xie ZG, Liang N, Zhang L, Chen ZH (2010) Anti-diabetic effects of Panax notoginseng saponins and its major anti-hyperglycemic components. J Ethnopharmacol 130:231–236

    Article  CAS  PubMed  Google Scholar 

  • Zheng T, Shu G, Yang Z, Mo S, Zhao Y, Mei Z (2012) Antidiabetic effect of total saponins from Entada phaseoloides (L.) Merr. In type 2 diabetic rats. J Ethnopharmacol 139:814–821

    Article  CAS  PubMed  Google Scholar 

  • Zheng W, Wang SY (2001) Antioxidant activity and phenolic compounds in selected herbs. J Agric Food Chem 49:5165–5170

    Article  CAS  PubMed  Google Scholar 

  • Zirihi GN, Mambu L, Guede-Guina F, Bodo B, Grellier P (2005) In vitro antiplasmodial activity and cytotoxicity of 33 West African plants used for treatment of malaria. J Ethnopharmacol 98:281–285

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the technical assistance of Dr. Lateef Ariyo Adeniran.

Funding

This study was funded by Directorate Research Development, University of Free state, South Africa (Entity No. 2114 B5004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akintayo Lanre Ogundajo.

Ethics declarations

Conflict of interest

Akintayo Lanre Ogundajo was awarded Postdoctoral fellowship from Directorate Research Development, University of Free state, South Africa for (Entity No. 2114 B5004) tenable at the Phytomedicine and Phytopharmacology Research Unit of the Department of Plant Sciences, University of the Free State (UFS), Qwaqwa Campus, Phuthaditjhaba, South Africa.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogundajo, A.L., Ashafa, A.O.T. Medicinal properties of Clerodendrum glaburum E may leaf extracts: phytochemical constituents, antioxidant, cytotoxicity, and carbohydrate-metabolizing enzyme inhibitory potentials. Comp Clin Pathol 28, 927–936 (2019). https://doi.org/10.1007/s00580-018-2825-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00580-018-2825-z

Keywords

Navigation